Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839897

RESUMO

Gene therapy is a promising approach for hereditary deafness. We recently showed that unilateral AAV1-hOTOF gene therapy with dual adeno-associated virus (AAV) serotype 1 carrying human OTOF transgene is safe and associated with functional improvements in patients with autosomal recessive deafness 9 (DFNB9). The protocol was subsequently amended and approved to allow bilateral gene therapy administration. Here we report an interim analysis of the single-arm trial investigating the safety and efficacy of binaural therapy in five pediatric patients with DFNB9. The primary endpoint was dose-limiting toxicity at 6 weeks, and the secondary endpoint included safety (adverse events) and efficacy (auditory function and speech perception). No dose-limiting toxicity or serious adverse event occurred. A total of 36 adverse events occurred. The most common adverse events were increased lymphocyte counts (6 out of 36) and increased cholesterol levels (6 out of 36). All patients had bilateral hearing restoration. The average auditory brainstem response threshold in the right (left) ear was >95 dB (>95 dB) in all patients at baseline, and the average auditory brainstem response threshold in the right (left) ear was restored to 58 dB (58 dB) in patient 1, 75 dB (85 dB) in patient 2, 55 dB (50 dB) in patient 3 at 26 weeks, and 75 dB (78 dB) in patient 4 and 63 dB (63 dB) in patient 5 at 13 weeks. The speech perception and the capability of sound source localization were restored in all five patients. These results provide preliminary insights on the safety and efficacy of binaural AAV gene therapy for hereditary deafness. The trial is ongoing with longer follow-up to confirm the safety and efficacy findings. Chinese Clinical Trial Registry registration: ChiCTR2200063181 .

2.
Lancet ; 403(10441): 2317-2325, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280389

RESUMO

BACKGROUND: Autosomal recessive deafness 9, caused by mutations of the OTOF gene, is characterised by congenital or prelingual, severe-to-complete, bilateral hearing loss. However, no pharmacological treatment is currently available for congenital deafness. In this Article, we report the safety and efficacy of gene therapy with an adeno-associated virus (AAV) serotype 1 carrying a human OTOF transgene (AAV1-hOTOF) as a treatment for children with autosomal recessive deafness 9. METHODS: This single-arm, single-centre trial enrolled children (aged 1-18 years) with severe-to-complete hearing loss and confirmed mutations in both alleles of OTOF, and without bilateral cochlear implants. A single injection of AAV1-hOTOF was administered into the cochlea through the round window. The primary endpoint was dose-limiting toxicity at 6 weeks after injection. Auditory function and speech were assessed by appropriate auditory perception evaluation tools. All analyses were done according to the intention-to-treat principle. This trial is registered with Chinese Clinical Trial Registry, ChiCTR2200063181, and is ongoing. FINDINGS: Between Oct 19, 2022, and June 9, 2023, we screened 425 participants for eligibility and enrolled six children for AAV1-hOTOF gene therapy (one received a dose of 9 × 1011 vector genomes [vg] and five received 1·5 × 1012 vg). All participants completed follow-up visits up to week 26. No dose-limiting toxicity or serious adverse events occurred. In total, 48 adverse events were observed; 46 (96%) were grade 1-2 and two (4%) were grade 3 (decreased neutrophil count in one participant). Five children had hearing recovery, shown by a 40-57 dB reduction in the average auditory brainstem response (ABR) thresholds at 0·5-4·0 kHz. In the participant who received the 9 × 1011 vg dose, the average ABR threshold was improved from greater than 95 dB at baseline to 68 dB at 4 weeks, 53 dB at 13 weeks, and 45 dB at 26 weeks. In those who received 1·5 × 1012 AAV1-hOTOF, the average ABR thresholds changed from greater than 95 dB at baseline to 48 dB, 38 dB, 40 dB, and 55 dB in four children with hearing recovery at 26 weeks. Speech perception was improved in participants who had hearing recovery. INTERPRETATION: AAV1-hOTOF gene therapy is safe and efficacious as a novel treatment for children with autosomal recessive deafness 9. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Science and Technology Commission of Shanghai Municipality, and Shanghai Refreshgene Therapeutics.


Assuntos
Dependovirus , Terapia Genética , Humanos , Terapia Genética/métodos , Dependovirus/genética , Criança , Masculino , Pré-Escolar , Feminino , Adolescente , Lactente , Vetores Genéticos , Resultado do Tratamento , Surdez/genética , Surdez/terapia , Mutação , Proteínas de Membrana
3.
Hum Genet ; 142(2): 289-304, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36383253

RESUMO

Mutations to the OTOF gene are among the most common reasons for auditory neuropathy. Although cochlear implants are often effective in restoring sound transduction, there are currently no biological treatments for individuals with variants of OTOF. Previous studies have reported the rescue of hearing in DFNB9 mice using OTOF gene replacement although the efficacy needs improvement. Here, we developed a novel dual-AAV-mediated gene therapy system based on the principles of protein trans-splicing, and we show that this system can reverse bilateral deafness in Otof -/- mice after a single unilateral injection. The system effectively expressed exogenous mouse or human otoferlin after injection on postnatal day 0-2. Human otoferlin restored hearing to near wild-type levels for at least 6 months and restored the release of synaptic vesicles in inner hair cells. Our study not only provides a preferential clinical strategy for the treatment of OTOF-related auditory neuropathies, but also describes a route of development for other large-gene therapies and protein engineering techniques.


Assuntos
Perda Auditiva Central , Perda Auditiva Neurossensorial , Humanos , Animais , Camundongos , Trans-Splicing , Audição , Perda Auditiva Neurossensorial/genética , Mutação , Proteínas de Membrana/genética
4.
Nat Commun ; 12(1): 3619, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131130

RESUMO

L-2-Hydroxyglutarate (L-2-HG) plays important roles in diverse physiological processes, such as carbon starvation response, tumorigenesis, and hypoxic adaptation. Despite its importance and intensively studied metabolism, regulation of L-2-HG metabolism remains poorly understood and none of regulator specifically responded to L-2-HG has been identified. Based on bacterial genomic neighborhood analysis of the gene encoding L-2-HG oxidase (LhgO), LhgR, which represses the transcription of lhgO in Pseudomonas putida W619, is identified in this study. LhgR is demonstrated to recognize L-2-HG as its specific effector molecule, and this allosteric transcription factor is then used as a biorecognition element to construct an L-2-HG-sensing FRET sensor. The L-2-HG sensor is able to conveniently monitor the concentrations of L-2-HG in various biological samples. In addition to bacterial L-2-HG generation during carbon starvation, biological function of the L-2-HG dehydrogenase and hypoxia induced L-2-HG accumulation are also revealed by using the L-2-HG sensor in human cells.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Regulação da Expressão Gênica , Glutaratos/metabolismo , Proteínas de Bactérias/genética , Líquidos Corporais , Escherichia coli , Células HEK293 , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Pseudomonas putida/genética , Fatores de Transcrição/metabolismo
5.
Nat Commun ; 11(1): 4639, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934238

RESUMO

The ability to detect, respond and adapt to mitochondrial stress ensures the development and survival of organisms. Caenorhabditis elegans responds to mitochondrial stress by activating the mitochondrial unfolded protein response (UPRmt) to buffer the mitochondrial folding environment, rewire the metabolic state, and promote innate immunity and lifespan extension. Here we show that HDA-1, the C. elegans ortholog of mammalian histone deacetylase (HDAC) is required for mitochondrial stress-mediated activation of UPRmt. HDA-1 interacts and coordinates with the genome organizer DVE-1 to induce the transcription of a broad spectrum of UPRmt, innate immune response and metabolic reprogramming genes. In rhesus monkey and human tissues, HDAC1/2 transcript levels correlate with the expression of UPRmt genes. Knocking down or pharmacological inhibition of HDAC1/2 disrupts the activation of the UPRmt and the mitochondrial network in mammalian cells. Our results underscore an evolutionarily conserved mechanism of HDAC1/2 in modulating mitochondrial homeostasis and regulating longevity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Longevidade , Mitocôndrias/enzimologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desacetilases/genética , Macaca mulatta , Estresse Fisiológico , Resposta a Proteínas não Dobradas
6.
Elife ; 82019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642431

RESUMO

Animals respond to mitochondrial stress with the induction of mitochondrial unfolded protein response (UPRmt). A cascade of events occur upon UPRmt activation, ultimately triggering a transcriptional response governed by two transcription factors: DVE-1 and ATFS-1. Here we identify SUMO-specific peptidase ULP-4 as a positive regulator of C. elegans UPRmt to control SUMOylation status of DVE-1 and ATFS-1. SUMOylation affects these two axes in the transcriptional program of UPRmt with distinct mechanisms: change of DVE-1 subcellular localization vs. change of ATFS-1 stability and activity. Our findings reveal a post-translational modification that promotes immune response and lifespan extension during mitochondrial stress.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/fisiologia , Cisteína Endopeptidases/metabolismo , Imunidade Inata , Longevidade/fisiologia , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cisteína Endopeptidases/genética , Lisina/metabolismo , Modelos Biológicos , Estabilidade Proteica , Transdução de Sinais , Sumoilação , Transcrição Gênica
7.
Mitochondrion ; 41: 9-13, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29180055

RESUMO

Proper function of mitochondria is often challenged by intrinsic factors and extrinsic stimuli. To cope with mitochondrial stress, organisms evolve mitochondrial unfolded protein response (UPRmt) to monitor mitochondrial function and induce the transcription of mitochondrial chaperones and proteases to restore mitochondrial proteostasis and alleviate stress. Interestingly, UPRmt also induces immune response genes and improves animals' fitness against pathogen infection. In this review, we will summarize progresses of UPRmt studies and discuss the relationship between UPRmt and the induction of innate immunity.


Assuntos
Nível de Saúde , Imunidade Inata/imunologia , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Aptidão Física , Resposta a Proteínas não Dobradas/imunologia , Animais , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA