Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 88(7): e202300226, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37438864

RESUMO

Chiral supramolecular assemblies with helical structures (e. g., proteins with α-helix, DNA with double helix, collagen with triple-helix) as the central structure motifs in biological systems play a crucial role in various physiological activities of living organisms. Variations in chiral structure can cause many abnormal physiological activities. To gain insight into the construction, structural transition, and related physiological functions of these complex helix in natural systems, it is necessary to fabricate artificial supramolecular assemblies with controllable helix orientation as research platform. This review discusses recent advances in chiral supramolecular assembly, including the precise construction and regulation of assembled chiral nanostructures with tunable chirality. Chiral structure-dependent biological activities, including cell proliferation, cell differentiation, antibacterial activity and tissue regeneration, are also discussed. This review not only contributes to further understanding of the importance of chirality in the physiological environment, but also plays an important role in the development of chiral biomedical materials for the treatment of diseases (e. g., tissue engineering regeneration, stem cell transplantation therapy).


Assuntos
Nanoestruturas , Estereoisomerismo , Nanoestruturas/química
2.
Angew Chem Int Ed Engl ; 62(24): e202303812, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37069482

RESUMO

The induction of diverse chirality regulation in nature by multiple binding sites of biomolecules is ubiquitous and plays an essential role in determining the biofunction of biosystems. However, mimicking this biological phenomenon and understanding at a molecular level its mechanism with the multiple binding sites by establishing an artificial system still remains a challenge. Herein, abundant chirality inversion is achieved by precisely and multiply manipulating the co-assembled binding sites of phenylalanine derivatives (D/LPPF) with different naphthalene derivatives (NA, NC, NP, NF). The amide and hydroxy group of naphthalene derivatives prefer to bind with the carboxy group of LPPF, while carboxylic groups and fluoride atoms tend to bind with the amide moiety of LPPF. All these diverse interaction modes can precisely trigger helicity inversion of LPPF nanofibers. In addition, synergistically manipulating the carboxy and amide binding sites from a single LPPF molecule to simultaneously interact with different naphthalene derivatives leads to chirality regulation. Typically, varying the solvent may switch the interaction modes and the switched new interaction modes can be employed to further regulate the chirality of the LPPF nanofibers. This study may provide a novel approach to explore chirality diversity in artificial systems by regulating the intermolecular binding sites.

3.
ACS Nano ; 17(7): 6275-6291, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36946387

RESUMO

Revascularization plays a critical role in the healing of diabetic wounds. Accumulation of advanced glycation end products (AGEs) and refractory multidrug resistant bacterial infection are the two major barriers to revascularization, directly leading to impaired healing of diabetic wounds. Here, an artfully designed chiral gel dressing is fabricated (named as HA-LM2-RMR), which consists of l-phenylalanine and cationic hexapeptide coassembled helical nanofibers cross-linked with hyaluronic acid via hydrogen bonding. This chiral gel possesses abundant chiral and cationic sites, not only effectively reducing AGEs via stereoselective interaction but also specifically killing multidrug resistant bacteria rather than host cells since cationic hexapeptides selectively interact with negatively charged microbial membrane. Surprisingly, the HA-LM2-RMR fibers present an attractive ability to activate sprouted angiogenesis of Human Umbilical Vein Endothelial Cells by upregulating VEGF and OPA1 expression. In comparison with clinical Prontosan Wound Gel, the HA-LM2-RMR gel presents superior healing efficiency in the infected diabetic wound with respect to angiogenesis and re-epithelialization, shortening the healing period from 21 days to 14 days. These findings for chiral wound dressing provide insights for the design and construction of diabetic wound dressings that target revascularization, which holds great potential to be utilized in tissue regenerative medicine.


Assuntos
Diabetes Mellitus , Células Endoteliais , Humanos , Cicatrização , Bandagens , Peptídeos/farmacologia , Produtos Finais de Glicação Avançada/farmacologia
4.
Angew Chem Int Ed Engl ; 61(46): e202211812, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36173979

RESUMO

Kinetic co-assembly pathway induced chirality inversion along with morphology transition is of importance to understand biological processes, but still remains a challenge to realize in artificial systems. Herein, helical nanofibers consisting of phenylalanine-based enantiomers (L/DPF) successfully transform into kinetically trapped architectures with opposite helicity through a kinetic co-assembly pathway. By contrast, the co-assemblies obtained by a thermodynamic pathway exhibit non-helical structures. The formation sequence of non-covalent interactions plays a crucial role in structural chirality of co-assemblies. For the kinetic pathway, the hydrogen bonding between D/LPF and naphthylamide derivatives forms before π-π stacking to facilitate the formation of helical structures with inverse handedness. This study may provide an approach to explore chirality inversion accompanied by morphology transition by manipulating the kinetic co-assembly pathway.


Assuntos
Fenilalanina , Ligação de Hidrogênio , Estereoisomerismo , Cinética , Termodinâmica
5.
J Phys Chem B ; 126(6): 1325-1333, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35113541

RESUMO

Chiral inversion of supramolecular assemblies is of great research interest due to its broad practical applications. However, chiral structure transition induced by in situ regulation of building molecules has remained a challenge. Herein, left-handed fibrous assemblies were constructed by C2-symmetic l-phenylalanine coupled with diethylene glycol (LPFEG) molecules. In situ hydrolyzing terminal diethylene glycol motifs in LPFEG successfully inverted the chirality of the nanofibers from left- to right-handedness. The transition of right-handed fibers into left-handed fibers could also be achieved via hydrolyzing DPFEG molecules. Circular dichroism (CD) spectroscopy, 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy revealed that the back-folded achiral diethylene glycol played a vital role in L/DPFEG molecular arrangements and removing terminal diethylene glycol could induce the opposite rotation of molecular assemblies. Thanks to this merit, the enantioselective separation of racemic phenylalanine was obtained and the enantiomeric excess (ee) values could achieve around ±20% after separation. This study not only provides a new strategy to regulate the chiral structure via dynamic modulation of terminal substituents but also presents a promising application in the field of enantioselective separation.


Assuntos
Etilenoglicóis , Dicroísmo Circular , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
6.
ACS Nano ; 15(9): 14972-14984, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34491712

RESUMO

How the three-dimensional (3D) chiral environment affects the biocatalysis remains an important issue, thereby inspiring the development of a microenvironment that highly mimics the natural features of enzyme to guarantee enhanced biocatalysis. In this study, two gelators bearing d/l-phenylalanine as chiral centers are designed to construct the 3D chiral catalytic microenvironment for enhancing the biocatalysis of lipase. Such a microenvironment is programmed through chiral transmission of chirality from molecular chirality to achiral polymers. It shows that the chirality of the microenvironment evidently influences the catalytic efficiency of immobilized lipase inside the system, and the 3D microenvironment constructed by right-handed helical nanostructures can enhance the catalytic activity of lipase inside as high as 10-fold for catalyzing 4-nitrophenyl palmitate (NPP) to 4-nitrophenol (NP) and 1.4-fold for catalyzing lipids to triglycerides (TGs) in 3T3-L1 cells than that of the achiral microenvironment. Moreover, the 3D chiral microenvironment has the merits of good catalytic efficiency, high storage stability, and efficient recyclability. This strategy of designing a 3D chiral microenvironment suitable for biocatalysis will overcome the present limitations of enzymatic immobilization in traditional materials and enhance the understanding of biocatalysis.


Assuntos
Biocatálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA