Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Mater ; 35(22): e2211738, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942383

RESUMO

Gate controllability is a key factor that determines the performance of GaN high electron mobility transistors (HEMTs). However, at the traditional metal-GaN interface, direct chemical interaction between metal and GaN can result in fixed charges and traps, which can significantly deteriorate the gate controllability. In this study, Ti3 C2 Tx MXene films are integrated into GaN HEMTs as the gate contact, wherein van der Waals heterojunctions are formed between MXene films and GaN without direct chemical bonding. The GaN HEMTs with enhanced gate controllability exhibit an extremely low off-state current (IOFF ) of 10-7 mA mm-1 , a record high ION /IOFF current ratio of ≈1013 (which is six orders of magnitude higher than conventional Ni/Au contact), a high off-state drain breakdown voltage of 1085 V, and a near-ideal subthreshold swing of 61 mV dec-1 . This work shows the great potential of MXene films as gate electrodes in wide-bandgap semiconductor devices.

2.
Sci Rep ; 5: 15794, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26507563

RESUMO

Polarization manipulation is essential in almost every photonic system ranging from telecommunications to bio-sensing to quantum information. This is traditionally achieved using bulk waveplates. With the developing trend of photonic systems towards integration and miniaturization, the need for an on-chip waveguide type waveplate becomes extremely urgent. However, this is very challenging using conventional dielectric waveguides, which usually require complex 3D geometries to alter the waveguide symmetry and are also difficult to create an arbitrary optical axis. Recently, a waveguide waveplate was realized using femtosecond laser writing, but the device length is in millimeter range. Here, for the first time we propose and experimentally demonstrate an ultracompact, on-chip waveplate using an asymmetric hybrid plasmonic waveguide to create an arbitrary optical axis. The device is only in several microns length and produced in a flexible integratable IC compatible format, thus opening up the potential for integration into a broad range of systems.

3.
Opt Express ; 20(10): 11487-95, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565768

RESUMO

An active metal strip hybrid plasmonic waveguide (MSHPW) using gain materials as loss compensation is proposed with an extremely simple fabrication procedure. Gain materials are introduced either in the low-index layer or in the high-index layer of MSHPW. The effects of waveguide dimensions and material gain coefficients on loss compensation are analyzed at the communication wavelength. For one configuration presented here, a critical material gain as low as 3.8cm(-1) is sufficient for fully compensation of the loss when using a high-index gain material. The active MSHPW with low critical material gain opens up opportunities for practical plasmonic devices in active applications such as amplifiers, sources, and modulators.


Assuntos
Metais/química , Amplificadores Eletrônicos , Técnicas Biossensoriais , Simulação por Computador , Desenho de Equipamento , Análise de Elementos Finitos , Teste de Materiais , Modelos Estatísticos , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA