Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402523, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747010

RESUMO

A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.

2.
ACS Appl Mater Interfaces ; 16(8): 10459-10467, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358426

RESUMO

Inverted colloidal-nanocrystal-based LEDs (NC-LEDs) are highly interesting and invaluable for large-scale display technology and flexible electronics. Semiconductor nanorods (NRs), in addition to the tunable wavelengths of the emitted light (achieved, for example, by the variation of the NR diameter or the diameter of core in a core-shell configuration), also exhibit linearly polarized emission, a larger Stokes shift, faster radiative decay, and slower bleaching kinetics than quantum dots (QDs). Despite these advantages, it is difficult to achieve void-free active NR layers using simple spin-coating techniques. Herein, we employ electrophoretic deposition (EPD) to make closely packed, vertically aligned CdSe/CdS core/shell nanorods (NRs) as the emissive layer. Following an inverted architecture, the device fabricated yields an external quantum efficiency (EQE) of 6.3% and a maximum luminance of 4320 cd/m2 at 11 V. This good performance can be attributed to the vertically aligned NR layer, enhancing the charge transport by reducing the resistance of carrier passage, which is supported by our finite element simulations. To the best of our knowledge, this is the first time vertically aligned NR layers made by EPD have been reported for the fabrication of NC-LEDs and the device performance is one of the best for inverted red NR-LEDs. The findings presented in this work bring forth a simple and effective technique for making vertically aligned NRs, and the mechanism behind the NR-LED device with enhanced performance using these NRs is illustrated. This technique may prove useful to the development of a vast class of nanocrystal-based optoelectronics, including solar cells and laser devices.

3.
ACS Mater Lett ; 6(1): 56-65, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178981

RESUMO

Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.

4.
Chem Mater ; 35(23): 10001-10008, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107195

RESUMO

Separation of the C8 aromatic isomers, xylenes (PX, MX, and OX) and ethylbenzene (EB), is important to the petrochemical industry. Whereas physisorptive separation is an energy-efficient alternative to current processes, such as distillation, physisorbents do not generally exhibit strong C8 selectivity. Herein, we report the mixed-linker square lattice (sql) coordination network [Zn2(sba)2(bis)]n·mDMF (sql-4,5-Zn, H2sba or 4 = 4,4'-sulfonyldibenzoic acid, bis or 5 = trans-4,4'-bis(1-imidazolyl)stilbene) and its C8 sorption properties. sql-4,5-Zn was found to exhibit high uptake capacity for liquid C8 aromatics (∼20.2 wt %), and to the best of our knowledge, it is the first sorbent to exhibit selectivity for PX, EB, and MX over OX for binary, ternary, and quaternary mixtures from gas chromatography. Single-crystal structures of narrow-pore, intermediate-pore, and large-pore phases provided insight into the phase transformations, which were enabled by flexibility of the linker ligands and changes in the square grid geometry and interlayer distances. This work adds to the library of two-dimensional coordination networks that exhibit high uptake, thanks to clay-like expansion, and strong selectivity, thanks to shape-selective binding sites, for C8 isomers.

5.
Cryst Growth Des ; 23(11): 8139-8146, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937187

RESUMO

Chiral metal-organic materials, CMOMs, are of interest as they can offer selective binding sites for chiral guests. Such binding sites can enable CMOMs to serve as chiral crystalline sponges (CCSs) to determine molecular structure and/or purify enantiomers. We recently reported on the chiral recognition properties of a homochiral cationic diamondoid, dia, network {[Ni(S-IDEC)(bipy)(H2O)][NO3]}n (S-IDEC = S-indoline-2-carboxylicate, bipy = 4,4'-bipyridine), CMOM-5[NO3]. The modularity of CMOM-5[NO3] means there are five feasible approaches to fine-tune structures and properties via substitution of one or more of the following components: metal cation (Ni2+); bridging ligand (S-IDEC); linker (bipy); extra-framework anion (NO3-); and terminal ligand (H2O). Herein, we report the effect of anion substitution on the CCS properties of CMOM-5[NO3] by preparing and characterizing {[Ni(S-IDEC)(bipy)(H2O)][BF4]}n, CMOM-5[BF4]. The chiral channels in CMOM-5[BF4] enabled it to function as a CCS for determination of the absolute crystal structures of both enantiomers of three chiral compounds: 1-phenyl-1-butanol (1P1B); methyl mandelate (MM); ethyl mandelate (EM). Chiral resolution experiments revealed CMOM-5[BF4] to be highly selective toward the S-isomers of MM and EM with enantiomeric excess, ee, values of 82.6 and 78.4%, respectively. The ee measured for S-EM surpasses the 64.3% exhibited by [DyNaL(H2O)4] 6H2O and far exceeds that of CMOM-5[NO3] (6.0%). Structural studies of the binding sites in CMOM-5[BF4] provide insight into their high enantioselectivity.

6.
J Am Chem Soc ; 145(42): 22885-22889, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844128

RESUMO

Although reticular chemistry has commonly utilized mutually embracing tetrahedral metal complexes as crossing points to generate three-dimensional molecularly woven structures, weaving in two dimensions remains largely unexplored. We report a new strategy to access 2D woven COFs by controlling the angle of the usually linear linker, resulting in the successful synthesis of a 2D woven pattern based on chain-link fence. The synthesis was accomplished by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with bent 4,4'-oxydianiline building units. This results in the formation of a crystalline solid, termed COF-523-Cu, whose structure was characterized by spectroscopic techniques and electron and X-ray diffraction techniques to reveal a molecularly woven, twofold-interpenetrated chain-link fence. The present work significantly advances the concept of molecular weaving and its practice in the design of complex chemical structures.

7.
Angew Chem Int Ed Engl ; 62(47): e202309985, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37770385

RESUMO

We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, ß, phases during activation. ß did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to ß after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN .

8.
Cryst Growth Des ; 23(7): 5211-5220, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37426545

RESUMO

Chiral metal-organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO3)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H2O)][NO3], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2-93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host-guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE.

9.
J Am Chem Soc ; 145(21): 11837-11845, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204941

RESUMO

Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C3H4/C3H6 separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C3H4/C3H6 selectivity (270) and a new benchmark for productivity (118 mmol g-1) of polymer grade C3H6 (purity >99.99%) from a 1:99 C3H4/C3H6 mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding "sweet spot" for C3H4 in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C3H4 and C3H6 molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent.

10.
Small ; 19(11): e2206945, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541750

RESUMO

A molecular porous material, MPM-2, comprised of cationic [Ni2 (AlF6 )(pzH)8 (H2 O)2 ] and anionic [Ni2 Al2 F11 (pzH)8 (H2 O)2 ] complexes that generate a charge-assisted hydrogen-bonded network with pcu topology is reported. The packing in MPM-2 is sustained by multiple interionic hydrogen bonding interactions that afford ultramicroporous channels between dense layers of anionic units. MPM-2 is found to exhibit excellent stability in water (>1 year). Unlike most hydrogen-bonded organic frameworks which typically show poor stability in organic solvents, MPM-2 exhibited excellent stability with respect to various organic solvents for at least two days. MPM-2 is found to be permanently porous with gas sorption isotherms at 298 K revealing a strong affinity for C2 H2 over CO2 thanks to a high (ΔQst )AC [Qst (C2 H2 ) - Qst (CO2 )] of 13.7 kJ mol-1 at low coverage. Dynamic column breakthrough experiments on MPM-2 demonstrated the separation of C2 H2 from a 1:1 C2 H2 /CO2 mixture at 298 K with effluent CO2 purity of 99.995% and C2 H2 purity of >95% after temperature-programmed desorption. C-H···F interactions between C2 H2 molecules and F atoms of AlF6 3- are found to enable high selectivity toward C2 H2 , as determined by density functional theory simulations.

11.
Angew Chem Int Ed Engl ; 61(52): e202215540, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36314983

RESUMO

Photocatalysis is a promising yet challenging approach for the selective oxidation of hydrocarbons to valuable oxygenated chemicals with O2 under mild conditions. In this work, we report an atomically precise material model to address this challenge. The key to our solution is the rational incorporation of Fe species into polyoxotitanium cluster to form a heterometallic Ti4 Fe1 cocrystal. This newly designed cocrystal cluster, which well governs the energy and charge transfer as evidenced by spectroscopic characterizations and theoretical calculations, enables the synergistic process involving C(sp3 )-H bond activation by photogenerated holes and further reactions by singlet oxygen (1 O2 ). Remarkably, the cocrystal Ti4 Fe1 cluster achieves efficient and selective oxidation of hydrocarbons (C5 to C16 ) into aldehydes and ketones with a conversion rate up to 12 860 µmol g-1 h-1 , 5 times higher than that of Fe-doped Ti3 Fe1 cluster. This work provides insights into photocatalyst design at atomic level enabling synergistic catalysis.

12.
J Am Chem Soc ; 144(18): 8153-8161, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35476917

RESUMO

A series of catecholate-functionalized titanium-oxo clusters (TOCs), PTC-271 to PTC-277, with atomically precise structures were synthesized and characterized, including distinctive "boat" and "chair" conformations in PTC-273 and PTC-274, respectively. These cluster compounds are prominent for their ultralow optical band gaps, as is visually evident from the rather unusual black TOCs (B-TOCs), PTC-272 to PTC-277. The cluster structures were found to be ultrastable with respect to air, water, organic solvents, and even acidic or basic aqueous solutions in a wide pH range (pH 0-13), owing to the stabilizing effects of catecholate and its derivatives, as well as the carboxylate ligands. Another prominent feature is the occurrence of third-order nonlinear optical (NLO) performance, which has previously been unreported in the field of homometallic titanium-oxo clusters. Open-aperture Z-scan experiments show significant solid-state optical limiting (OL) applications of these B-TOCs, with high laser irradiation stability and low minimum normalized transmittance (Tmin) of PTC-273 as ∼0.17. Meanwhile, theoretical calculations indicate that the smaller band gaps of B-TOCs were beneficial for strengthening the NLO response. This work not only represents a significant milestone in the construction of stable low-band gap black titanium oxide materials but also contributes to the mechanism insights into their optical applications.

13.
J Am Chem Soc ; 143(46): 19287-19293, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34757722

RESUMO

Hydrogen peroxide (H2O2) is one of the most important industrial oxidants. In principle, photocatalytic H2O2 synthesis from oxygen and H2O using sunlight could provide a cleaner alternative route to the current anthraquinone process. Recently, conjugated organic materials have been studied as photocatalysts for solar fuels synthesis because they offer synthetic tunability over a large chemical space. Here, we used high-throughput experiments to discover a linear conjugated polymer, poly(3-4-ethynylphenyl)ethynyl)pyridine (DE7), which exhibits efficient photocatalytic H2O2 production from H2O and O2 under visible light illumination for periods of up to 10 h or so. The apparent quantum yield was 8.7% at 420 nm. Mechanistic investigations showed that the H2O2 was produced via the photoinduced stepwise reduction of O2. At longer photolysis times, however, this catalyst decomposed, suggesting a need to focus the photostability of organic photocatalysts, as well as the initial catalytic production rates.

14.
Inorg Chem ; 60(18): 13955-13959, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34498867

RESUMO

Presented here is the light hydrocarbon separation of titanium metal-organic frameworks (Ti-MOFs). Compared with the cyclic Ti-oxo cluster (Ti8O8(CO2)16, Ti8Ph), porous structures of FIR-125 and FIR-126 (FIR = Fujian Institute Research) can effectively improve the adsorption amounts of light hydrocarbons. The introduction of different functional groups and Ti-oxo clusters with small window sizes enables them to exhibit the highly selective separation of C2 and C3 hydrocarbons versus methane in an ambient atmosphere. The results show that Ti-MOFs are potential porous adsorbents for the separation of light hydrocarbons.

15.
Inorg Chem ; 59(16): 11442-11448, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799486

RESUMO

Ag-Ti nanocomposite materials have drawn increasing research attention because of their superior catalytic properties. However, the preparation of a crystalline Ag-Ti material is an important challenge in synthetic chemistry. Herein, we report a family of atomically precise Ag-doped polyoxotitanium nanoclusters (PTCs) (PTC-253-PTC-256) with a size of 19.56 × 19.02 Å. Each Ag-PTC is made up of a tiny Ag2 kernel and a double-decker Ti12 nanowheel as well as an organic protective shell. Hence, they can be regarded as Ag2@Ti12@(L)14(OMe)n unique triple core-shell structures. Notably, the peripheral organic shell can be modified with different benzoate derivatives. With precise atomic information, these compounds can be used as ideal molecular models of Ag-Ti nanocomposite materials for studying the growth or reaction mechanism via theoretical calculations. Meanwhile, a PTC-255-modified electrode presents efficient electrocatalytic CO2 reduction activity with a Faradaic efficiency (FE) of 29.4%. This work demonstrates that Ag-doped crystalline PTC materials are promising candidates for application to the electrocatalytic CO2 reduction reaction (CO2RR).

16.
J Am Chem Soc ; 142(29): 12784-12790, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32579354

RESUMO

A series of increasingly large silver nanoclusters with a varied combination of Archimedean and/or Platonic solid arrangements was constructed using a flexible trifurcate TiL3 (L = Salicylic acid or 5-fluorosalicylic acid) metalloligand: Ag4@Ag4@Ti4 (PTC-85), Ag12@Ti4 (PTC-86), Ag4@Ag6@Ag12@Ti4 (PTC-87), Ag6@Ag24@Ag12@Ti4 (PTC-88), and Ag12@Ag24@Ti4 (PTC-89). The silver nanoclusters are each capped by four TiL3 moieties, thereby forming {Ti4} supertetrahedra with average edge lengths ranging from ∼8.12 Å to ∼17.37 Å. Such {Ti4} moieties further induce the tetrahedral geometry of the encapsulated silver nanoclusters. These atomically precise metallic clusters were found to be ultrastable with respect to air for several months, and to water for more than 3 days, due to the stabilizing effects of the TiL3 metalloligand. Moreover, the obtained clusters exhibit nonlinear optical (NLO) effects in optical limiting tests and also temperature-dependent photoluminescent properties. This work provides an interesting metalloligand method not only to induce the spatial growth of metallic clusters to achieve highly symmetric structures, but also to enhance their stability which is crucial for future application.

17.
Inorg Chem ; 58(19): 13353-13359, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31536335

RESUMO

The synthetic approach plays a crucial role for the exploration and optimization of functional materials. As the molecular models of titanium dioxide, polyoxo-titanium clusters have undergone rapid development over past decade. Unfortunately, many of them are unstable, especially in aqueous environments, greatly limiting their applications in catalysis and environmental fields. In this work, we report a novel phenol-thermal approach toward the construction of highly stable polyoxo-titanium clusters. In addition to the traditional one-pot procedure, the phenol-thermal synthesis can also be used as a postsynthetic pathway to modify the alcohol terminated titanium-oxo clusters. During the modification in phenol, Ti-O core structures consisting entirely of 6-coordinated TiIV centers can be retained. Nevertheless, isopropanol terminated 5-coordinated TiIV centers are not stable and reconstructed to 6-coordinated TiIV centers during the phenol-thermal modification to form new Ti-O clusters. Physical attribute studies confirm that the obtained phenolic clusters generally display much better stability and stronger visible light absorption than isopropanol stabilized clusters with identical or similar cores. Therefore, phenol can not only offer a suitable solution environment for the construction of new cluster structures but also provide robust protection for the cluster cores and also an efficient method to enhance their visible light responses.

18.
Chemistry ; 25(44): 10450-10455, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31131934

RESUMO

A range of polyoxotitanium clusters (PTCs) was constructed by tuning the type of acid (inorganic and organic) in alcoholic solvents, from Ti4 , Ti6 , Ti9 , Ti11 , to Ti16 . After removing the tBuOH solvent, giant carboxylate-stabilized Ti44 -oxo clusters in which propionic acid serves as both ligand and solvent were ultimately obtained. The four labile sites in the Ti44 cluster core can be occupied by two formate and two propionate anions (PTC-165) or a pair of glutarate (PTC-166) or 3-methylglutarate anions (PTC-167). According to the synthesis of PTC-155 to PTC-167, the propionic acid solvent plays a crucial role in the construction of giant Ti oxo clusters. Their one-pot yields, which readily reached up to 8.75 g for PTC-165 and 9.96 g for PTC-166, proved the feasibility of large-scale preparation. More interestingly, the obtained Ti44 -oxo clusters are almost completely surrounded by carboxylate ligands, which allow them to retain crystalline stability in air for about three weeks and in either acidic or basic aqueous solution over a wide pH range for at least 6 h. In addition, PTC-165 and PTC-166 exhibit excellent UV photocurrent response and reversible photochromic effect. This work provides a systematic approach for constructing high-nuclearity and stable PTCs on a large scale, which is significant for future applications of PTC-based photochemical devices.

19.
Acta Crystallogr C Struct Chem ; 74(Pt 11): 1248-1251, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398175

RESUMO

In recent years, crystalline polyoxotitanium clusters (PTCs) have attracted increasing attention as a new kind of promising crystalline material. In this work, a PTC stabilized by phenylphosphonate ligands, i.e. hexa-µ-isopropanolato-hexaisopropanolatodi-µ3-oxido-hexa-µ3-phenylphosphonato-heptatitanium tetrahydrate, [Ti7(µ3-O)2(O3P-Phen)6(OiPr)12]·4H2O [PTC-54; H2O3P-Phen is phenylphosphonic acid, C6H5PO(OH)2, and HOiPr is isopropanol, C3H7OH], was obtained successfully through a facile one-step solvothermal reaction. The dumbbell-like core structure of PTC-54 can be described as two trinuclear {Ti3(µ3-O)} building units combined together by six phenylphosphonate ligands and one additional Ti atom, giving rise to a Ti7 cluster. Adjacent molecules of PTC-54 are further connected through π-π interactions between the phenyl groups to form a supramolecular one-dimensional chain.

20.
Inorg Chem ; 57(9): 5642-5647, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29664302

RESUMO

A series of dicarboxylates bridged titanium-oxo clusters with {Ti3(µ3-O)} building units have been synthesized through facile one-step solvothermal reactions. It is interesting to find that the geometric characteristics of the obtained supramolecular structures highly depend on the configuration of the applied dicarboxylate ligands. A linear dimeric [Ti3O]2L2 complex can be constructed using flexible cyclohexanedicarboxylic acid, while the introduction of rigid 2-nitro-1,4-benzenedicarboxylic acid gives rise to a triangular [Ti3O]3L3 structure. Moreover, unusual [Ti3O]4L4 rectangles have been achieved with more symmetric 5-nitro-1,3-benzenedicarboxylic acid or terephthalic acid. Furthermore, a photochromic effect is observed on the obtained complexes upon UV-vis light irradiation in the presence of alcohol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA