Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175808, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197765

RESUMO

The in-depth investigation of the high black carbon (BC) emission scenarios of heavy-duty diesel vehicles (HDDVs) is a crucial step toward developing effective control strategies. Chassis dynamometer tests were conducted for three in-use HDDVs, namely, vehicle #1, #2, and #3, focusing on the instantaneous BC characterizations during multiple driving conditions, i.e., speed phases and acceleration intervals. BC emission was found to increase with positive acceleration, and high acceleration could result in instantaneous BC spikes. The total BC emissions during velocity-acceleration interval 15-60 km h-1 and 0.1-0.9 m s-2 contributed to 43.4 ± 10.2 % of the whole-cycle emissions, while the proportions of time spent in the velocity-acceleration interval to the whole cycle were 23.1 ± 7.6 %. The cold-start microscopic operating condition was assessed by the cold-start extra emissions (CSEEs). Under various pre-defined cold-start durations, the proportions of CSEEs in the total cycle emissions were 9.4-21.0 %, 0-9.1 %, and 6.8-39.4 % for vehicles #1, #2, and #3, respectively. The CSEEs exhibited an initial rise, followed by a plateau as the assumed cold-start durations extended. A uniform cold-start duration of 600 s was established based on the criterion that the relative standard deviation (RSD) of CSEEs during the plateau period was <10 %. We proposed that the updated cold-start duration can enhance the accuracy and consistency of cold-start corrections in emission inventory models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA