Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(1): e2302440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668280

RESUMO

The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.


Assuntos
Biomimética , Percepção do Tato , Humanos , Temperatura , Tato/fisiologia , Canais Iônicos
2.
ACS Appl Mater Interfaces ; 13(28): 33557-33565, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34250798

RESUMO

Electronic tattoos as an emerging epidermal electronic are alluring in the field of wearable electronics for their lightweight and noninvasive properties. However, the combination of flexibility, skin biocompatibility, adhesion, repairability, and erasability remains a challenge for fabricating electronic tattoos. Hence, a dynamic ionic liquid is prepared which is ideally suited for making an electronic tattoo with these challenging features at the same time. Such an intrinsically flexible electronic tattoo can be firmly attached to human skin with negligible irritation. More importantly, the existence of dynamic covalent chemistry provides the electronic tattoo with healing and erasable abilities under mild redox conditions. Owing to the high ionic conductivity of ionic liquids, the electronic tattoo exhibits excellent sensing performance in response to the temperature variation and tensile strain, which can intelligently monitor body temperature, pulse, and movement. As an extension of the application, a specially designed quadrilateral electronic tattoo can sense and distinguish multiple signals simultaneously. This concept of electronic tattoo based on the dynamic ionic liquid shows great potentials in the applications of intelligent wearable electronics.


Assuntos
Líquidos Iônicos/química , Tatuagem , Dispositivos Eletrônicos Vestíveis , Animais , Temperatura Corporal , Condutividade Elétrica , Humanos , Imidazóis/química , Líquidos Iônicos/síntese química , Camundongos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento (Física) , Maleabilidade , Pulso Arterial , Materiais Inteligentes/síntese química , Materiais Inteligentes/química , Ácido Tióctico/química
3.
Chem Asian J ; 16(2): 129-141, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33289291

RESUMO

Thermoelectric materials represent a new paradigm for harvesting low-grade heat, which would otherwise be dissipated to the environment uselessly. Relative to conventional thermoelectric materials generally composed of semiconductors or semi-metals, ionic thermoelectric materials are rising as an alternative choice which exhibit higher Seebeck coefficient and lower thermal conductivity. The ionic thermoelectric materials own a completely different thermoelectric conversion mechanism, in which the ions do not enter the electrode but rearrange on the electrode surface to generate a voltage difference between the hot and cold electrodes. This unique character has inspired worldwide interests on the design of ionic-type thermoelectric converters with attractive advantages of high flexibility, low cost, limited environmental pollution, and self-healing capability. Referring to the categories of ionic thermoelectric conversion, some representative ionic thermoelectric materials with their respective characteristics are summarized in this minireview. In addition, examples of applying ionic thermoelectric materials in supercapacitors, wearable devices, and fire warning system are also discussed. Insight into the challenges for the further development of ionic thermoelectric materials is finally provided.

4.
ACS Appl Mater Interfaces ; 12(24): 27691-27699, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32432852

RESUMO

Early fire alarming is of vital importance to lower the damages led by forest fires. Thus far, methods to monitor the forest fires at their early stage are mainly focused on artificial ground patrol, unmanned aerial vehicle cruise monitoring, observation by watchtower, or satellite inspection, whereas these methods are practically encountered with the problems of untimely feedback before the forest fires are out of control. This work proposes a particular kind of self-powered, low-cost, and green thermoelectric paper chips based on the principle of self-assembly and disassembly of ionic liquids on the surface of gold electrodes. By adjustment of the species of ionic liquids, both "n- and p-type" thermoelectric behaviors have been exploited that correspond to the opposite open-circuit voltages. Owing to the fluidic nature of ionic liquids, those "n- and p-type" thermoelectric units can be readily connected in series on one paper chip, leading to remarkable voltage signals in the presence of the temperature difference of 35 K. Followed by signal acquisition and transmission, such a thermoelectric paper chip successfully affords immediate electrical alarming at the early stage of an afire circumstance.

5.
Nat Commun ; 10(1): 547, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710100

RESUMO

Liquid sensors composed of ionic liquids are rising as alternatives to solid semiconductors for flexible and self-healing electronics. However, the fluidic nature may give rise to leakage problems in cases of accidental damages. Here, we proposed a liquid sensor based on a binary ionic liquid system, in which a flowing ionic liquid [OMIm]PF6 is confined by another azobenzene-containing ionic liquid crystalline [OMIm]AzoO. Those crystal components provide sufficient pinning capillary force to immobilize fluidic components, leading to a freestanding liquid-like product without the possibility of leakage. In addition to owning ultra-high temperature sensitivity, crystal-confined ionic liquids also combine the performances of both liquid and solid so that it can be stretched, bent, self-healed, and remolded. With respect to the reconfigurable property, this particular class of ionic liquids is exploited as dynamic circuits which can be spatially reorganized or automatically repaired.

6.
Small ; 12(28): 3788-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27254465

RESUMO

Great efforts have been devoted to the control of phase separation between blended polymers in terms of the advantages for engineering functional topologies. A simple and straightforward pathway through roughness transfer printing (RTP) is proposed to realize the control of polymer phase separation. The additional roughness difference, which is introduced by trace agarose transferred from a hydrogel stamp, offers a great effect on the rate of nucleation and coalescence orientation of polymethylmethacrylate (PMMA) protrusions grown from a polydimethylsiloxane (PDMS) network. Using a particular topography of agarose stamp and a proper growth time in toluene atmosphere, a 2D microlens array with high uniformity is obtained that shows great potential for optical applications. Moreover, the control of polymer phase separation was successfully extended to the collection and identification of fingerprints with a high degree of replication.

7.
ACS Macro Lett ; 5(7): 823-827, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35614759

RESUMO

Deposition of particular layers of solid materials on a swelling polymer leads to the formation of functional wrinkles after the release of polymer strain. Unlike traditional mechanical stretching, polymer swelling could introduce uniform wrinkle structures on complex substrates as a result of isotropic polymer elongation. In this work, conductive silver wrinkles are grown on an elastomer by combining polymer swelling with electroless deposition. By adjusting the cross-linking ratio of polymer substrate or deposition time, the amplitude and wavelength of wrinkles can be tuned to meet demands for ultrasensitive pressure sensors. The detectable pressure limit is successfully reached below 1.0 Pa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA