Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36361191

RESUMO

The mechanical behavior of carbonaceous mudstone deteriorates greatly when exposed to wet environments, and the precise evaluation of its slope stability has been a difficulty. This study aims to establish a numerical analysis method for the instability problems of its slopes; this method considers the effects of weathering and water-softening by establishing their mathematical expressions. The weathering and water-softening effects are reflected by variations in the mechanical properties (e.g., elastic modulus, angle of internal friction, and cohesion) of carbonaceous mudstone, with the depth following a logistic function and the shear strength parameters varying with wetting duration and degree of saturation. Their weathering and water-softening effects are reproduced with the use of the ABAQUS finite-element software and MATLAB programming. The proposed numerical method is applied to analyze the seepage field and stability of a highway cut slope with and without protection structures; the application results show that the proposed numerical method is reliable in analyzing the slope's instability problem. The use of the herringbone skeleton structures can reduce the water-softening effects and thus increase the safety factor of the slope. The findings of this study could provide guidance to the design and construction of highway cut slopes in mountain areas that are rich in carbonaceous mudstone.

2.
Nanomaterials (Basel) ; 12(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234615

RESUMO

The influence of structure and composition on precipitation phenomena in Al-bearing BCC/HCP Mg alloys are studied via diffusion couple technique. Interdiffusion induced by the resultant composition gradient results in a change in crystal structure from HCP to BCC in the diffusion zone. The Vickers hardness in the diffusion zone is much higher than that in the Mg-5.5at.%Al and Mg-38at.%Li, which is attributed to the chemical ordering by nano-sized secondary ordered D03-Mg3Al precipitation in the BCC Mg-Li-Al diffusion zone. The reasons for different precipitation in Al-bearing Mg alloys with various matrices are discussed. Generating ordered precipitates can be an effective approach to improve both strength and ductility in HCP Mg alloys.

3.
Polymers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807945

RESUMO

Slopes with carbonaceous mudstone (CM) are widely distributed in the southwest of China and have experienced numerous geological disasters in special climate, especially in rainfall conditions. Therefore, novel materials to stabilize CM slopes have attracted increasing interests. However, developing ultra-stable and cost-effective additives for CM slopes is still a great challenge. Herein, a hydrophobic polymeric material (polyvinylidene fluoride, PVDF) is investigated as an additive to enhance the mechanical strength and long-time stability of CM slopes. The PVDF is uniformly dispersed in CM matrix via interfacial interaction. The contact angle of the PVDF-modified carbonaceous mudstone (PVDF-MCM) can reach as high as 103.95°, indicating an excellent hydrophobicity. The unconfined compressive strength (UCS) and tensile strength (TS) of PVDF-MCM have been intensively enhanced to 4.07 MPa and 1.96 MPa, respectively, compared with ~0 MPa of pristine CM. Moreover, the UCS and TS of PVDF-MCM remain at 3.24 MPa and 1.03 MPa even after curing for 28 days in high humidity conditions. Our findings show that the PVDF can improve the hydrophobicity of CM significantly, which leads to super mechanical stability of PVDF-MCM. The excellent performance makes PVDF a promising additive for the development of ultra-stable, long-lifetime and cost-effective carbonaceous mudstone slopes.

4.
J Nanosci Nanotechnol ; 20(8): 4807-4814, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126659

RESUMO

This study aims to examine the mechanical behavior of disintegrated carbonaceous mudstone modified with nanosilica and cement (DCMNC). Many DCMNC specimens with various nanosilica contents were prepared. The X-ray diffraction (XRD) analyses and scanning electron microscopy (SEM) observations were performed on some of the specimens. Afterwards, triaxial tests were carried out on the remaining specimens to determine the mechanical behavior of DCMNC. The results showed that the cohesion exhibited a positive correlation with nanosilica content while the angle of internal friction presented a negative correlation with nanosilica content. The peak deviatoric stress, residual deviatoric stress and brittle modulus of DCMNC showed an increase followed by a decrease as nanosilica content varied from 0 to 8%, and all of them reached corresponding maximums at a nanosilica content of 2%. Thus, 2% was considered to be the optimum nanosilica content. The modification mechanism of DCMNC could be explained by the pozzolanic reaction related to nanosilica and the filling effect of nanosilica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA