Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5238, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433245

RESUMO

Leaf angle, as one of the important agronomic traits of maize, can directly affect the planting density of maize, thereby affecting its yield. Here we used the ZmLPA1 gene mutant lpa1 to study maize leaf angle and found that the lpa1 leaf angle changed significantly under exogenous brassinosteroid (BR) treatment compared with WT (inbred line B73). Transcriptome sequencing of WT and lpa1 treated with different concentrations of exogenous BR showed that the differentially expressed genes were upregulated with auxin, cytokinin and brassinosteroid; Genes associated with abscisic acid are down-regulated. The differentially expressed genes in WT and lpa1 by weighted gene co-expression network analysis (WGCNA) yielded two gene modules associated with maize leaf angle change under exogenous BR treatment. The results provide a new theory for the regulation of maize leaf angle by lpa1 and exogenous BR.


Assuntos
Brassinosteroides , Zea mays , Zea mays/genética , Perfilação da Expressão Gênica , Expressão Gênica , Folhas de Planta/genética
2.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563277

RESUMO

Maize plant type is one of the main factors determining maize yield, and leaf angle is an important aspect of plant type. The rice Loose Plant Architecture1 (LPA1) gene and Arabidopsis AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene are related to their leaf angle. However, the homologous ZmLPA1 in maize has not been studied. In this study, the changing of leaf angle, as well as gene expression in leaves in maize mutant lpa1 and wild-type 'B73' under different IAA concentrations were investigated. The regulation effect of IAA on the leaf angle of lpa1 was significantly stronger than that of the wild type. Transcriptome analysis showed that different exogenous IAA treatments had a common enrichment pathway-the indole alkaloid biosynthesis pathway-and among the differentially expressed genes, four genes-AUX1, AUX/IAA, ARF and SAUR-were significantly upregulated. This study revealed the regulation mechanism of ZmLPA1 gene on maize leaf angle and provided a promising gene resource for maize breeding.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Oryza/genética , Filogenia , Melhoramento Vegetal , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays
3.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554168

RESUMO

Salt stress is one of the key abiotic stresses that causes great loss of yield and serious decrease in quality in maize (Zea mays L.). Therefore, it is very important to reveal the molecular mechanism of salt tolerance in maize. To acknowledge the molecular mechanisms underlying maize salt tolerance, two maize inbred lines, including salt-tolerant 8723 and salt-sensitive P138, were used in this study. Comparative proteomics of seedling roots from two maize inbred lines under 180 mM salt stress for 10 days were performed by the isobaric tags for relative and absolute quantitation (iTRAQ) approach. A total of 1056 differentially expressed proteins (DEPs) were identified. In total, 626 DEPs were identified in line 8723 under salt stress, among them, 378 up-regulated and 248 down-regulated. There were 473 DEPs identified in P138, of which 212 were up-regulated and 261 were down-regulated. Venn diagram analysis showed that 17 DEPs were up-regulated and 12 DEPs were down-regulated in the two inbred lines. In addition, 8 DEPs were up-regulated in line 8723 but down-regulated in P138, 6 DEPs were down-regulated in line 8723 but up-regulated in P138. In salt-stressed 8723, the DEPs were primarily associated with phenylpropanoid biosynthesis, starch and sucrose metabolism, and the mitogen-activated protein kinase (MAPK) signaling pathway. Intriguingly, the DEPs were only associated with the nitrogen metabolism pathway in P138. Compared to P138, the root response to salt stress in 8723 could maintain stronger water retention capacity, osmotic regulation ability, synergistic effects of antioxidant enzymes, energy supply capacity, signal transduction, ammonia detoxification ability, lipid metabolism, and nucleic acid synthesis. Based on the proteome sequencing information, changes of 8 DEPs abundance were related to the corresponding mRNA levels by quantitative real-time PCR (qRT-PCR). Our results from this study may elucidate some details of salt tolerance mechanisms and salt tolerance breeding of maize.


Assuntos
Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Tolerância ao Sal , Estresse Fisiológico , Zea mays/fisiologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Endogamia , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteômica/métodos , Tolerância ao Sal/genética , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico/genética
4.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181633

RESUMO

The growth and development of maize roots are closely related to drought tolerance. In order to clarify the molecular mechanisms of drought tolerance between different maize (Zea mays L.) varieties at the protein level, the isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics were used for the comparative analysis of protein expression in the seedling roots of the drought-tolerant Chang 7-2 and drought-sensitive TS141 maize varieties under 20% polyethylene glycol 6000 (PEG 6000)-simulated drought stress. We identified a total of 7723 differentially expressed proteins (DEPs), 1243 were significantly differentially expressed in Chang 7-2 following drought stress, 572 of which were up-regulated and 671 were down-regulated; 419 DEPs were identified in TS141, 172 of which were up-regulated and 247 were down-regulated. In Chang 7-2, the DEPs were associated with ribosome pathway, glycolysis/gluconeogenesis pathway, and amino sugar and nucleotide sugar metabolism. In TS141, the DEPs were associated with metabolic pathway, phenylpropanoid biosynthesis pathway, and starch and sucrose metabolism. Compared with TS141, the higher drought tolerance of Chang 7-2 root system was attributed to a stronger water retention capacity; the synergistic effect of antioxidant enzymes; the strengthen cell wall; the osmotic stabilization of plasma membrane proteins; the effectiveness of recycling amino acid; and an improvement in the degree of lignification. The common mechanisms of the drought stress response between the two varieties included: The promotion of enzymes in the glycolysis/gluconeogenesis pathway; cross-protection against the toxicity of aldehydes and ammonia; maintenance of the cell membrane stability. Based on the proteome sequencing information, the coding region sequences of eight DEP-related genes were analyzed at the mRNA level by quantitative real-time PCR (qRT-PCR). The findings of this study can inform the future breeding of drought-tolerant maize varieties.


Assuntos
Secas , Pressão Osmótica , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteoma/genética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA