Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(27): e202400474, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38456559

RESUMO

The relationship among chemical structure, physicochemical property and aggregation behavior of organic functional material is an important research topic. Here, we designed and synthesized three bis(squaraine) dyes BSQ1, BSQ2 and BSQ3 through the combination of two kinds of unsymmetrical azulenyl squaraine monomers. Their physicochemical properties were investigated in both molecular and aggregate states. Generally, BSQ1 displayed different assembly behaviors from BSQ2 and BSQ3. Upon fabrication into nanoparticles, BSQ1 tend to form J-aggregates while BSQ2 and BSQ3 tend to form H-aggregates in aqueous medium. When in the form of thin films, three bis(squaraine) dyes all adopted J-aggregation packing modes while only BSQ1 presented the most significant rearrangement of aggregate structures as well as the improvement in the carrier mobilities upon thermal annealing. Our research highlights the discrepancy of aggregation behaviors originating from the molecular structure and surrounding circumstances, providing guidance for the molecular design and functional applications of squaraines.

2.
Angew Chem Int Ed Engl ; 63(17): e202400372, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38445354

RESUMO

The second near-infrared (NIR-II) theranostics offer new opportunities for precise disease phototheranostic due to the enhanced tissue penetration and higher maximum permissible exposure of NIR-II light. However, traditional regimens lacking effective NIR-II absorption and uncontrollable excited-state energy decay pathways often result in insufficient theranostic outcomes. Herein a phototheranostic nano-agent (PS-1 NPs) based on azulenyl squaraine derivatives with a strong NIR-II absorption band centered at 1092 nm is reported, allowing almost all absorbed excitation energy to dissipate through non-radiative decay pathways, leading to high photothermal conversion efficiency (90.98 %) and strong photoacoustic response. Both in vitro and in vivo photoacoustic/photothermal therapy results demonstrate enhanced deep tissue cancer theranostic performance of PS-1 NPs. Even in the 5 mm deep-seated tumor model, PS-1 NPs demonstrated a satisfactory anti-tumor effect in photoacoustic imaging-guided photothermal therapy. Moreover, for the human extracted tooth root canal infection model, the synergistic outcomes of the photothermal effect of PS-1 NPs and 0.5 % NaClO solution resulted in therapeutic efficacy comparable to the clinical gold standard irrigation agent 5.25 % NaClO, opening up possibilities for the expansion of NIR-II theranostic agents in oral medicine.


Assuntos
Ciclobutanos , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica/métodos , Fenóis/farmacologia , Ciclobutanos/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fototerapia , Técnicas Fotoacústicas/métodos , Linhagem Celular Tumoral
3.
ACS Macro Lett ; 12(4): 487-493, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37000948

RESUMO

Azulene has aroused widespread interest for constructing optoelectronic materials. However, controlling the dipole orientation of 2,6-azulene units in the conjugated polymer backbone is a significant challenge so far. Herein, by C-H activation strategy, three 2,6-azulene-TPD-based conjugated copolymers with different dipole arrangements were synthesized, where TPD = thieno[3,4-c]pyrrole-4,6-dione. The dipole arrangements of 2,6-azulene units were random for P(AzTPD-1), head-to-head/tail-to-tail for P(AzTPD-2), and head-to-tail for P(AzTPD-3). These polymers exhibited unipolar n-type semiconductor characteristics in organic field effect transistors. Moreover, regioregular polymer P(AzTPD-3) displayed the best device performance with an electron mobility of up to 0.33 cm2 V-1 s-1, which makes P(AzTPD-3) a high-performance n-type polymeric semiconductor. These results demonstrate that incorporation of 2,6-azulene units into the polymeric backbone together with the regulation of the dipole orientation of 2,6-azulene units is an effective strategy for obtaining high-performance organic optoelectronic materials.

4.
Angew Chem Int Ed Engl ; 62(20): e202301617, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929068

RESUMO

Integrating the ultralong excitation wavelength, high extinction coefficient, and prominent photothermal conversion ability into a single photothermal agent is an appealing yet significantly challenging task. Herein, a precise dual-acceptor engineering strategy is exploited for this attempt based on donor-acceptor (D-A) type semiconductor polymers by subtly regulating the molar proportions of the two employed electron acceptor moieties featuring different electronic affinity and π-conjugation degrees, and making full use of the active intramolecular motion-induced photothermal effect. The optimal polymer SP4 synchronously shows desirable second near-infrared (NIR-II) absorption, an extremely high extinction coefficient, and satisfactory photothermal conversion behavior. Consequently, the unprecedented performance of SP4 NPs on 1064 nm laser-excited photoacoustic imaging (PAI)-guided photothermal therapy (PTT) is demonstrated by the precise tumor diagnosis and complete tumor elimination.

5.
J Am Chem Soc ; 145(3): 1617-1630, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625785

RESUMO

Dipoles are widely involved in π-π interactions and are central to many chemical and biological functions, but their influence on the strength of π-π interactions remains unclear. Here, we report a study of π-π interaction between azulene-based, polar single molecules and between naphthalene-based, nonpolar single molecules. By performing scanning tunneling microscopy break junction measurements of single-molecule conductance, we show that the π-stacked dimers formed by the azulene-based, polar aromatic structures feature higher electrical conductivity and mechanical stability than those formed by the naphthalene-based, nonpolar molecules. Mechanical control of π-π interactions in both rotational and translational motion reveals a sensitive dependence of the stacking strength on relative alignment between the dipoles. The antiparallel alignment of the dipoles was found to be the optimal stacking configuration that underpins the observed enhancement of π-π stacking between azulene-based single molecules. Density functional theory calculations further explained the observed enhancement of stacking strength and the corresponding charge transport efficiency. Our experimental and theoretical results show that the antiparallel alignment of the dipole moments significantly enhances the electronic coupling and mechanical stability of π-π stacking. In addition, in the formation of single-molecule junctions, the azulene group was experimentally and theoretically proved to form a Au-π contact with electrodes with high charge transport efficiency. This paper provides evidence and interpretation of the role of dipoles in π-π interactions at the single-molecule level and offers new insights into potential applications in supramolecular devices.

6.
J Am Chem Soc ; 144(45): 20797-20803, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36274261

RESUMO

The PNP structure realized by energy band engineering is widely used in various electronic and optoelectronic devices. In this work, we succeed in constructing a PNP-type single-molecule junction and explore the intrinsic characteristics of the PNP structure at the single-molecule level. A back-to-back azulene molecule is designed with opposite ∼1.7 D dipole moments to create PNP-type single-molecule junctions. In combination with theoretical and experimental studies, it is found that the intrinsic dipole can effectively adjust single-molecule charge transport and the corresponding potential barriers. This energy band control and charge transport regulation at the single-molecule level improve deep understanding of molecular charge transport mechanisms and provide important insights into the development of high-performance functional molecular nanocircuits toward practical applications.


Assuntos
Eletrônica , Nanotecnologia
7.
ACS Macro Lett ; 11(5): 680-686, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35570807

RESUMO

Azulene-based homopolymers are of great interest from the point view of chemistry and material science. Herein, by means of Friedel-Crafts acylation to introduce solubilizing chains on the 1-position of azulene, we designed and synthesized two examples of 2,6-azulene-based homopolymers RP(Az-AC16) and P(Az-AC16). The arrangement of 2,6-azulene units is irregular for RP(Az-AC16), while P(Az-AC16) has head-to-head/tail-to-tail arranged 2,6-azulene units. Proton-responsive studies demonstrate that RP(Az-AC16) and P(Az-AC16) show reversible proton responsiveness in both solution and thin film. To utilize the dynamically reversible proton-responsive property of these polymers in thin films, RP(Az-AC16) and P(Az-AC16) were incorporated into a Nafion matrix as proton exchange membranes, wherein the Nafion/P(Az-AC16) composite membrane exhibits significant increases in proton conductivity relative to the Nafion membrane at different temperatures of each relative humidity (RH), which further results in a 64% improvement in hydrogen fuel cell output power under 30% RH at 80 °C. Our studies have realized the first solution synthesis of 2,6-azulene-based homopolymers and the first application of azulene-based π-systems in hydrogen fuel cells.


Assuntos
Azulenos , Prótons , Hidrogênio/química , Membranas Artificiais , Polímeros/química
8.
ACS Appl Mater Interfaces ; 14(17): 19192-19203, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438482

RESUMO

Photoacoustic imaging (PAI) guided photothermal therapy (PTT) can realize real-time diagnosis and in situ treatment of cancer at the same time. Absorption in the near-infrared (NIR) region with large molar extinction coefficient (ε) and high value of photothermal conversion efficiency (PCE) are key prerequisites for photothermal agents (PTAs) to realize dual PAI and PTT treatments. Squaraines have stable quinoid structures with strong planarity and rigidity, in favor of the NIR absorption and high ε values. On the other hand, azulene derivatives mostly have very faint fluorescence emission, which is beneficial for photothermal transformation. Herein, two azulene-containing squaraines Az-SQ-1 and Az-SQ-2 are synthesized as high-performance PTAs. In comparison with Az-SQ-1, Az-SQ-2 possesses larger εmax of 3 × 105 M-1 cm-1 at 780 nm in organic solution and higher PCE of 53.2% in the form of nanoparticles under 808 nm laser irradiation. Accordingly, Az-SQ-2 NPs present stronger photoacoustic signals (about 15.1-times the background signal) and more efficient suppression of tumor growth. Our research indicates that the introduction of azulene unit to traditional NIR dyes is a simple but effective approach to obtain outstanding PTAs in the aspect of phototheranostics.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Azulenos/farmacologia , Ciclobutanos , Humanos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fenóis , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Terapia Fototérmica , Nanomedicina Teranóstica/métodos
9.
Org Lett ; 24(12): 2414-2419, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302773

RESUMO

The synthesis of a class of contorted electron-deficient polycyclic aromatic hydrocarbons (PAHs) has been achieved by a one-pot bay annulation of perylene diimide involving a mild Suzuki coupling and subsequent air-mediated, ambient-light-induced photocyclization. X-ray crystallography unambiguously confirmed the contorted PAH structure bearing four imide groups. The photophysical and electronic properties of these contorted PAHs were also analyzed, showing a high fluorescence quantum yield of 86% and moderate electron mobility of 0.017 cm2 V-1 s-1.

10.
Angew Chem Int Ed Engl ; 61(18): e202201494, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35191154

RESUMO

Azulene is a non-benzenoid aromatic building block with unique chemical structure and physicochemical properties. By using the "bottom-up" synthetic strategy, we synthesized three azulene-embedded [n]helicenes ([n]AzHs, n=5, 6 and 7), in which one terminal azulene subunit was fused with n-2 benzene rings. P- and M-enantiomers were observed in the packing diagrams of [5]-, and [6]AzHs. However, P- and M-[7]AzHs could be isolated by recrystallization of the racemic mixture. These [n]AzHs were endowed with new properties through the azulene moiety such as low-lying first electric state (S1 ), small optical energy gap and anti-Kasha emission. [6]-, and [7]AzHs exhibit strong chiroptical responses with high absorption dissymmetry factor (gabs ) maxima of about 0.02, which is among the highest |gabs | values of helicenes in the visible range. These azulene-embedded [n]helicenes contribute to the non-benzenoid helicene library and allow the structure-property relationships to be better understood.

11.
Chem Commun (Camb) ; 57(85): 11181-11184, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34618880

RESUMO

A small amount of the 3-(hexyldimethylammonio)propane-1-sulfonate zwitterionic side chain was integrated into a diketopyrrolopyrrole ambipolar polymer to modulate its field-effect carrier-transport characteristics. It was found that such a modification can strengthen the interchain interaction, promote crystallization, and thus improve the hole and electron mobilities by 3.9- and 8.2-fold, respectively.

12.
Nat Commun ; 12(1): 2774, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986296

RESUMO

The cornerstones of emerging high-performance organic photovoltaic devices are bulk heterojunctions, which usually contain both structure disorders and bicontinuous interpenetrating grain boundaries with interfacial defects. This feature complicates fundamental understanding of their working mechanism. Highly-ordered crystalline organic p-n heterojunctions with well-defined interface and tailored layer thickness, are highly desirable to understand the nature of organic heterojunctions. However, direct growth of such a crystalline organic p-n heterojunction remains a huge challenge. In this work, we report a design rationale to fabricate monolayer molecular crystals based p-n heterojunctions. In an organic field-effect transistor configuration, we achieved a well-balanced ambipolar charge transport, comparable to single component monolayer molecular crystals devices, demonstrating the high-quality interface in the heterojunctions. In an organic solar cell device based on the p-n junction, we show the device exhibits gate-tunable open-circuit voltage up to 1.04 V, a record-high value in organic single crystalline photovoltaics.

13.
Acc Chem Res ; 54(7): 1737-1753, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33691401

RESUMO

ConspectusAzulene, an isomer of naphthalene, is a molecule of historical interest for its unusual photophysical properties, including a beautiful blue color derived from the narrow HOMO-LUMO energy gap and anti-Kasha fluorescence from S2 to S0. More recently, it has attracted increasing attention for its novel electronic structure, including an electron-rich five-membered ring and an electron-deficient seven-membered ring with a dipole moment of 1.08 D resulting from resonance delocalization, its different reactivities at odd and even positions, and its stimuli-responsive behavior. As a key building block, azulene has been used in various fields because of its unique physicochemical properties. Recent studies have demonstrated the great potential of azulene for constructing advanced organic materials. However, exploring azulene-based materials has long been hindered by challenges in molecular design and synthesis. Most of the reported azulene-based materials have the azulene unit incorporated through the five-membered ring or seven-membered ring. Creating azulene-based novel building blocks for optoelectronics and using 2,6-connected azulene units to construct conjugated polymers that can adequately utilize the "donor-acceptor" structure of azulene remained underexplored before our contributions. Besides, for most azulene-fused polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics, the azulene substructures were created during later synthesis stages, and the use of azulene derivatives as starting materials to design and synthesize PAHs and heteroaromatics intelligently is still limited.In this Account, we summarize our efforts on the design, synthesis, and applications of azulene-based π-functional materials. Our studies start with the creation of novel π-conjugated structures based on azulene. The design strategy, synthesis, and optoelectronic performance of the first class of azulene-based aromatic diimides, 2,2'-biazulene-1,1',3,3'-tetracarboxylic diimide (BAzDI) and its π-extended and π-bridged derivatives, are presented. Notably, antiparallel stacking between adjacent azulene units derived from azulene's dipole was observed in single crystals of BAzDI and its derivatives. Besides, we developed an azulene-fused isoindigo analogue, azulenoisoindigo, which combines the merits of both isoindigo and azulene, including reversible redox behavior and reversible proton responsiveness. Then we discuss our contributions to the design and synthesis of 2,6-azulene-based conjugated polymers. By incorporation of 2,6-connected azulene units into the polymeric backbone, two conjugated polymers with high organic field-effect transistor (OFET) performance were developed. Two 2,6-azulene-based polymers with proton responsiveness and high electrical conductivity upon protonation were also provided. We also discuss our recent studies on azulene-based heteroaromatics. Two azulene-fused BN-heteroaromatics were designed and synthesized, and they exhibited a selective response to fluoride ion and unexpected deboronization upon the addition of trifluoroacetic acid. An unexpected synthesis of azulene-pyridine-fused heteroaromatics (Az-Py) by reductive cyclization of 1-nitroazulenes and the OFET performance of Az-Py-1 are included. Afterward, we discuss several examples of azulene-capped organic conjugated molecules. The molecules capped with the five-membered ring of azulene favor hole transport, whereas the ones capped with the seven-membered ring favor electron transport.

15.
J Am Chem Soc ; 142(31): 13598-13605, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32790412

RESUMO

Azulene, a nonbenzenoid bicyclic aromatic hydrocarbon with unique electronic structure, is a promising building block for constructing nonbenzenoid π-conjugated systems. However, azulene-fused (hetero)aromatics remain rare as a result of limited synthetic methods. We report herein the unexpected synthesis of azulene- and pyridine-fused heteroaromatics Az-Py-1, a seven fused ring system with 30π electrons, by reductive cyclization of a 1-nitroazulene. The structure of Az-Py-1 was unambiguously confirmed by single-crystal X-ray analysis, and analogues Az-Py-2-Az-Py-6 were also synthesized, demonstrating that this is an effective method for constructing azulene- and pyridine-fused heteroaromatics. Theoretical calculations and photophysical and electrochemical studies of Az-Py-1-Az-Py-6 suggest their potential as semiconductors, and the single-crystal ribbons of Az-Py-1 show high hole mobilities up to 0.29 cm2 V-1 s-1.

16.
Adv Mater ; 32(31): e2000273, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32579297

RESUMO

Modulating photophysical processes is a fundamental way for tuning performance of many organic devices. However, it has not been explored as an effective strategy to manipulate the thermoelectric (TE) conversion of organic semiconductors (OSCs) owing to their critical requirement to carrier concentration (>1018 cm-3 ) and the fact of low exciton separation efficiency in single element OSCs. Here, an electric field modulated photo-thermoelectric (P-TE) effect in an n-type OSC is demonstrated to realize a significant improvement of TE performance. The electrical and spectroscopy characterizations reveal that the electric field gating generates combined modulation of exciton separation, charge screening, and carrier recombination, which produces a more than ten times improvement of photoinduced carrier concentration. These coupled processes contribute to the unconventional Seebeck coefficient (S)-electrical conductivity (σ) trade-off relationship of the photoexcited films, therefore leading to a more than 500% enhancement in the power factor for n-type OTE semiconductors. This work opens a unique way toward state-of-the-art organic P-TE materials for energy harvesting applications.

17.
Angew Chem Int Ed Engl ; 59(11): 4380-4384, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31943644

RESUMO

The sensitivity of conventional thin-film OFET-based sensors is limited by the diffusion of analytes through bulk films and remains the central challenge in sensing technology. Now, for the first time, an ultrasensitive (sub-ppb level) sensor is reported that exploits n-type monolayer molecular crystals (MMCs) with porous two-dimensional structures. Thanks to monolayer crystal structure of NDI3HU-DTYM2 (NDI) and controlled formation of porous structure, a world-record detection limit of NH3 (0.1 ppb) was achieved. Moreover, the MMC-OFETs also enabled direct detection of solid analytes of biological amine derivatives, such as dopamine at an extremely low concentration of 500 ppb. The remarkably improved sensing performances of MMC-OFETs opens up the possibility of engineering OFETs for ultrasensitive (bio)chemical sensing.

18.
J Org Chem ; 85(1): 70-78, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31549835

RESUMO

Azulene, a nonalternant bicyclic aromatic hydrocarbon, has unique chemical and physical properties and is considered to be a promising building block for constructing novel polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics. We present here the first two azulene-based BN-heteroaromatics Az-BN-1 and Az-BN-2. The chemical structures and optical and electrochemical properties of both compounds have been investigated, as well as their sensing behavior in response to fluoride ion. Az-BN-1 and Az-BN-2 show different photophysical properties from other reported BN-embedded PAHs, such as lower band gaps and unusual fluorescence. In addition, Az-BN-1 and Az-BN-2 exhibit unexpected deboronization upon addition of trifluoroacetic acid, which distinguishes them from other reported BN-heteroaromatics and can be ascribed to the unique property of the azulene unit.

19.
Chem Commun (Camb) ; 55(69): 10234-10237, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31393461

RESUMO

In this work, dithieno[3,2-a:3',2'-j][5,6,11,12]chrysene diimides (DTCDI), an electron-deficient π-building block, were firstly incorporated into polymer main chains by using the 3,9-positions of chrysene and the α,α'-positions of thiophene units of DTCDI to connect with the 2,2'-bithiophene unit, affording copolymers P1 and P2, respectively. Due to their different connection ways the two polymers feature different optoelectronic properties.

20.
Langmuir ; 35(18): 6188-6195, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977665

RESUMO

Chirality, as a fundamental symmetry property, plays an important role in molecular assembly in the solid state, impacting upon the properties and performance of organic materials. Here, heterochiral assembly was observed upon a binaphthol-based axially chiral material in the thin film state, where the heterochiral assemblies of racemic mixtures exhibit superior crystallization behavior and film morphologies than their homochiral counterparts. Additionally, a dramatic increase (nearly 2 orders of magnitudes) in electronic mobility was obtained upon switching the active layers of organic thin-film transistors from homochiral assemblies to heterochiral assemblies. This work not only gives insights into the structure-aggregation property relationships of axially chiral self-assemblies but also offers new opportunities for novel organic soft materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA