Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Nat Commun ; 15(1): 4359, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777835

RESUMO

Cystine-knot peptides (CKPs) are naturally occurring peptides that exhibit exceptional chemical and proteolytic stability. We leveraged the CKP carboxypeptidase A1 inhibitor as a scaffold to construct phage-displayed CKP libraries and subsequently screened these collections against HTRA1, a trimeric serine protease implicated in age-related macular degeneration and osteoarthritis. The initial hits were optimized by using affinity maturation strategies to yield highly selective and potent picomolar inhibitors of HTRA1. Crystal structures, coupled with biochemical studies, reveal that the CKPs do not interact in a substrate-like manner but bind to a cryptic pocket at the S1' site region of HTRA1 and abolish catalysis by stabilizing a non-competent active site conformation. The opening and closing of this cryptic pocket is controlled by the gatekeeper residue V221, and its movement is facilitated by the absence of a constraining disulfide bond that is typically present in trypsin fold serine proteases, thereby explaining the remarkable selectivity of the CKPs. Our findings reveal an intriguing mechanism for modulating the activity of HTRA1, and highlight the utility of CKP-based phage display platforms in uncovering potent and selective inhibitors against challenging therapeutic targets.


Assuntos
Domínio Catalítico , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Peptídeos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Biblioteca de Peptídeos , Cristalografia por Raios X , Ligação Proteica , Cistina/química , Cistina/metabolismo , Modelos Moleculares
3.
Mol Phylogenet Evol ; 197: 108110, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38768875

RESUMO

Ciliophora, an exceptionally diverse lineage of unicellular eukaryotes, exhibits a remarkable range of species richness across classes in the ciliate Tree of Life. In this study, we have acquired transcriptome and genome data from 40 representative species in seven ciliate classes. Utilizing 247 genes and 105 taxa, we devised a comprehensive phylogenomic tree for Ciliophora, encompassing over 60 % of orders and constituting the most extensive dataset of ciliate species to date. We established a robust phylogenetic framework that encompasses ambiguous taxa and the major classes within the phylum. Our findings support the monophyly of each of two subphyla (Postciliodesmatophora and Intramacronucleata), along with three subclades (Protocruzia, CONTHREEP, and SAPML) nested within Intramacronucleata, and elucidate evolutionary positions among the major classes within the phylum. Drawing on the robust ciliate Tree of Life and three constraints, we estimated the radiation of Ciliophora around 1175 Ma during the middle of the Proterozoic Eon, and most of the ciliate classes diverged from their sister lineage during the latter half of this period. Additionally, based on the time-calibrated tree and species richness pattern, we investigated net diversification rates of Ciliophora and its classes. The global net diversification rate for Ciliophora was estimated at 0.004979 species/Ma. Heterogeneity in net diversification rates was evident at the class level, with faster rates observed in Oligohymenophorea and Spirotrichea than other classes within the subclades CONTHREEP and SAPML, respectively. Notably, our analysis suggests that variations in net diversification rates, rather than clade ages, appear to contribute to the differences in species richness in Ciliophora at the class level.

4.
Heliyon ; 10(7): e28413, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596054

RESUMO

Background: Metabolic reprogramming is implicated in cancer progression. However, the impact of metabolism-associated genes in stomach adenocarcinomas (STAD) has not been thoroughly reviewed. Herein, we characterized metabolic transcription-correlated STAD subtypes and evaluated a metabolic RiskScore for evaluation survival. Method: Genes related to metabolism were gathered from previous study and metabolic subtypes were screened using ConsensusClusterPlus in TCGA-STAD and GSE66229 dataset. The ssGSEA, MCP-Count, ESTIMATE and CIBERSORT determined the immune infiltration. A RiskScore model was established using the WGCNA and LASSO Cox regression in the TCGA-STAD queue and verified in the GSE66229 datasets. RT-qPCR was employed to measure the mRNA expressions of genes in the model. Result: Two metabolism-related subtypes (C1 and C2) of STAD were constructed on account of the expression profiles of 113 prognostic metabolism genes with different immune outcomes and apparently distinct metabolic characteristic. The overall survival (OS) of C2 subtype was shorter than that of C1 subtype. Four metabolism-associated genes in turquoise model, which closely associated with C2 subtype, were employed to build the RiskScore (MATN3, OSBPL1A, SERPINE1, CPNE8) in TCGA-train dataset. Patients developed a poorer prognosis if they had a high RiskScore than having a low RiskScore. The promising effect of RiskScore was verified in the TCGA-test, TCGA-STAD and GSE66229 datasets. The prediction reliability of the RiskScore was validated by time-dependent receiver operating characteristic curve (ROC) and nomogram. Moreover, samples with high RiskScore had an enhanced immune status and TIDE score. Moreover, MATN3, OSBPL1A, SERPINE1 and CPNE8 mRNA levels were all elevated in SGC7901 cells. Inhibition of OSBPL1A decreased SGC7901 cells invasion numbers. Conclusion: This work provided a new perspective into heterogeneity in metabolism and its association with immune escape in STAD. RiskScore was considered to be a strong prognostic label that could help individualize the treatment of STAD patients.

5.
Nat Commun ; 15(1): 2824, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561378

RESUMO

Coherent perfect absorption (CPA) and amplification of electromagnetic waves are converse phenomena, where incoming radiations are coherently dissipated or amplified by structured incidences. Realizing such two phenomena simultaneously in a single device may benefit various applications such as biological sensing, photo detection, radar stealth, solar-thermal energy sharing, and wireless communications. However, previous experimental realizations of CPA and amplification generally require precise controls to the loss and gain of a system, making dynamic switching between the absorption and amplification states a challenge. To this end, we propose a nonlinear approach to realize CPA and parametric amplification (PA) simultaneously at the same frequency and demonstrate experimentally dynamic switch from the CPA to PA states in a judiciously designed nonlinear spoof plasmonic waveguide. The measured output signal gain can be continuously tuned from -33 dB to 22 dB in a propagation length of 9.2 wavelengths. Compared to the traditional linear CPA, our approach relaxes the stringent requirements on device dimensions and material losses, opening a new route to actively modulate the electromagnetic waves with giant amplification-to-absorption contrast in a compact platform. The proposed nonlinear plasmonic platform has potential applications in on-chip systems and wireless communications.

6.
J Mater Chem B ; 12(13): 3191-3208, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497358

RESUMO

Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint inhibitor-based immunotherapy has provided a unique and potent weapon against cancer in clinical practice. The likelihood of achieving beneficial effects from PD-L1/PD-1 immune checkpoint blockade (ICB) therapy is clinically assessed by detecting PD-L1 expression through invasive tissue biopsies. However, PD-L1 expression is susceptible to tumor heterogeneity and dynamic response to ICB therapy. Moreover, currently, anti-PD-L1 immunotherapy still faces challenges of the low targeting efficiency of antibody drugs and the risk of immune-associated adverse events. To overcome these issues, advanced nanotechnology has been developed for the purpose of quantitative, non-invasive, and dynamic analyses of PD-L1, and to enhance the efficiency of ICB therapy. In this review, we first introduce the nanoprobe-assisted in vitro/in vivo modalities for the selective and sensitive analysis of PD-L1 during the diagnostic and therapeutic process. On the other hand, the feasibility of fabricating diverse functional nanocarriers as smart delivery systems for precisely targeted delivery of PD-L1 immune checkpoint inhibitors and combined therapies is highlighted. Finally, the current challenges are discussed and future perspectives for PD-L1-targeted cancer theranostics in preclinical research and clinical settings are proposed.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Medicina de Precisão , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico
7.
PLoS One ; 19(3): e0299804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547072

RESUMO

Disulfide constrained peptides (DCPs) show great potential as templates for drug discovery. They are characterized by conserved cysteine residues that form intramolecular disulfide bonds. Taking advantage of phage display technology, we designed and generated twenty-six DCP phage libraries with enriched molecular diversity to enable the discovery of ligands against disease-causing proteins of interest. The libraries were designed based on five DCP scaffolds, namely Momordica charantia 1 (Mch1), gurmarin, Asteropsin-A, antimicrobial peptide-1 (AMP-1), and potato carboxypeptidase inhibitor (CPI). We also report optimized workflows for screening and producing synthetic and recombinant DCPs. Examples of novel DCP binders identified against various protein targets are presented, including human IgG Fc, serum albumin, vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor (PDGF). We identified DCPs against human IgG Fc and serum albumin with sub-micromolar affinity from primary panning campaigns, providing alternative tools for potential half-life extension of peptides and small protein therapeutics. Overall, the molecular diversity of the DCP scaffolds included in the designed libraries, coupled with their distinct biochemical and biophysical properties, enables efficient and robust identification of de novo binders to drug targets of therapeutic relevance.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Dissulfetos/metabolismo , Peptídeos/química , Bacteriófagos/genética , Imunoglobulina G/metabolismo
8.
PLoS One ; 19(3): e0300135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547109

RESUMO

Peptides present an alternative modality to immunoglobulin domains or small molecules for developing therapeutics to either agonize or antagonize cellular pathways associated with diseases. However, peptides often suffer from poor chemical and physical stability, limiting their therapeutic potential. Disulfide-constrained peptides (DCP) are naturally occurring and possess numerous desirable properties, such as high stability, that qualify them as drug-like scaffolds for peptide therapeutics. DCPs contain loop regions protruding from the core of the molecule that are amenable to peptide engineering via direct evolution by use of phage display technology. In this study, we have established a robust platform for the discovery of peptide therapeutics using various DCPs as scaffolds. We created diverse libraries comprising seven different DCP scaffolds, resulting in an overall diversity of 2 x 1011. The effectiveness of this platform for functional hit discovery has been extensively evaluated, demonstrating a hit rate comparable to that of synthetic antibody libraries. By utilizing chemically synthesized and in vitro folded peptides derived from selections of phage displayed DCP libraries, we have successfully generated functional inhibitors targeting the HtrA1 protease. Through affinity maturation strategies, we have transformed initially weak binders against Notch2 with micromolar Kd values to high-affinity ligands in the nanomolar range. This process highlights a viable hit-to-lead progression. Overall, our platform holds significant potential to greatly enhance the discovery of peptide therapeutics.


Assuntos
Dissulfetos , Peptídeos , Peptídeos/farmacologia , Peptídeos/química , Biblioteca de Peptídeos , Peptídeo Hidrolases
9.
Phytomedicine ; 128: 155492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479258

RESUMO

BACKGROUND: The damage of chemotherapy drugs to immune function and intestinal mucosa is a common side effect during chemotherapy. Astragalus polysaccharides (APS) exhibit immunomodulatory properties and are recognized for preserving the integrity of the human intestinal barrier. Nevertheless, their application and mechanisms of action in chemotherapy-induced immune damage and intestinal barrier disruption remain insufficiently explored. PURPOSE: This study delved into investigating how APS mitigates chemotherapy-induced immune dysfunction and intestinal mucosal injury, while also providing deeper insights into the underlying mechanisms. METHODS: In a chemotherapy mice model induced by 5-fluorouracil (5-Fu), the assessment of APS's efficacy encompassed evaluations of immune organ weight, body weight, colon length, and histopathology. The regulation of different immune cells in spleen was detected by flow cytometry. 16S rRNA gene sequencings, ex vivo microbiome assay, fecal microbiota transplantation (FMT), and targeted metabolomics analysis were applied to explore the mechanisms of APS effected on chemotherapy-induced mice. RESULTS: APS ameliorated chemotherapy-induced damage to immune organs and regulated immune cell differentiation disorders, including CD4+T, CD8+T, CD19+B, F4/80+CD11B+ macrophages. APS also alleviated colon shortening and upregulated the expression of intestinal barrier proteins. Furthermore, APS significantly restored structure of gut microbiota following chemotherapy intervention. Ex vivo microbiome assays further demonstrated the capacity of APS to improve 5-Fu-induced microbiota growth inhibition and compositional change. FMT demonstrated that the regulation of gut microbiota by APS could promote the recovery of immune functions and alleviate shortening of the colon length. Remarkably, APS significantly ameliorated the imbalance of linoleic acid (LA) and α-linolenic acid in polyunsaturated fatty acid (PUFA) metabolism. Further in vitro experiments showed that LA could promote splenic lymphocyte proliferation. In addition, both LA and DGLA down-regulated the secretion of NO and partially up-regulated the percentage of F4/80+CD11B+CD206+ cells. CONCLUSION: APS can effectively ameliorate chemotherapy-induced immune damage and intestinal mucosal disruption by regulating the composition of the gut microbiota and further restoring PUFA metabolism. These findings indicate that APS can serve as an adjuvant to improve the side effects such as intestinal and immune damage caused by chemotherapy.


Assuntos
Astrágalo , Ácidos Graxos Insaturados , Fluoruracila , Microbioma Gastrointestinal , Polissacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Camundongos , Astrágalo/química , Ácidos Graxos Insaturados/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Transplante de Microbiota Fecal , Colo/efeitos dos fármacos
10.
Cell Rep Med ; 5(3): 101477, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508143

RESUMO

Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.


Assuntos
Fígado Gorduroso , Receptor A1 de Adenosina , Humanos , Camundongos , Animais , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Fígado Gorduroso/tratamento farmacológico , Lipogênese/genética , Dieta Hiperlipídica/efeitos adversos
11.
World J Clin Cases ; 12(1): 210-216, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38292641

RESUMO

BACKGROUND: Intestinal malrotation is a congenital defect of embryonic development caused by various teratogenic factors. In this condition, the intestinal tube, along with the superior mesenteric artery serving as the axis for the counterclockwise movement, is incomplete or abnormally rotated due to incomplete attachment of the mesentery and abnormal intestinal tube position. Such a case is usually asymptomatic and thus difficult to detect. Therefore, similar variant malformations are only found during an operation required for other abdominal diseases. CASE SUMMARY: An elderly male patient was admitted to the hospital due to gastric cancer. An abdominal computed tomography (CT) scan with contrast revealed that the ascending and descending colon were parallel on the right side of the abdominal cavity, while the sigmoid colon extended into the right iliac fossa, allowing the diagnosis of congenital midgut malrotation. Following thorough preoperative preparation, the patient underwent laparoscopic radical gastrectomy to treat his gastric cancer. Intraoperatively, an exploration of the abdominal cavity uncovered the absence of the transverse colon. The distal colon at the hepatic flexure, along with the ascending colon, extended into the right iliac fossa, where it continued as the sigmoid colon. As planned, the laparoscopic radical gastrectomy was performed, and the patient was discharged from the hospital 7 d after the surgery. CONCLUSION: Asymptomatic intestinal malrotation is best detected by CT, requiring no treatment but possibly interfering with the treatment of other diseases.

12.
Bioresour Technol ; 394: 130276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176595

RESUMO

This study was conducted to achieve economic and sustainable production of biomass and lipids from Chlorella sorokiniana by recirculating cultivation with recycled harvesting water, to identify the major inhibitory factors in recirculating culture, and to analyze accordingly economic benefits. The results showed that recirculating microalgae cultivation (RMC) could obtain 0.20-0.32 g/L biomass and lipid content increased by 23.1 %-38.5 %. Correlation analysis showed that the extracellular polysaccharide (PSext), chemical oxygen demand (COD) and chromaticity of recirculating water inhibited photosynthesis and induced oxidative stress, thus inhibiting the growth of C. sorokiniana. In addition, the economic benefits analysis found that circulating the medium twice could save about 30 % of production cost, which is the most economical RMC solution. In conclusion, this study verified the feasibility and economy of RMC, and provided a better understanding of inhibitory factors identification in culture.


Assuntos
Chlorella , Microalgas , Água , Biomassa , Estudos de Viabilidade , Lipídeos
13.
J Hazard Mater ; 466: 133519, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278073

RESUMO

Antibiotics, such as ciprofloxacin (CIP), are frequently detected in various environmental compartments, posing significant risks to ecosystems and human health. In this study, the physiological responses and elimination mechanisms of CIP in Chlorella sorokiniana and Scenedesmus dimorphus were determined. The exposure CIP had a minimal impact on the growth of microalgae, with maximum inhibit efficiency (IR) of 5.14% and 22.74 for C. sorokiniana and S. dimorphus, respectively. Notably, the photorespiration in S. dimorphus were enhanced. Both microalgae exhibited efficient CIP removal, predominantly through bioaccumulation and biodegradation processes. Intermediates involved in photolysis and biodegradation were analyzed through Liquid Chromatography High Resolution Mass Spectrometer (HPLC-MS/MS), providing insights into degradation pathways of CIP. Upregulation of key enzymes, such as dioxygenase, oxygenase and cytochrome P450, indicated their involvement in the biodegradation of CIP. These findings enhance our understanding of the physiological responses, removal mechanisms, and pathways of CIP in microalgae, facilitating the advancement of microalgae-based wastewater treatment approaches, particularly in antibiotic-contaminated environments.


Assuntos
Chlorella , Microalgas , Humanos , Ciprofloxacina/metabolismo , Microalgas/metabolismo , Chlorella/metabolismo , Espectrometria de Massas em Tandem , Ecossistema , Antibacterianos/análise , Água Doce/análise
14.
J Agric Food Chem ; 72(1): 230-244, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38079533

RESUMO

A high calorie diet such as excessive fat and sucrose intake is always accompanied by impaired glucose homeostasis such as T2DM (type 2 diabetes mellitus). However, it remains unclear how fat and sucrose individually affect host glucose metabolism. In this study, mice were fed with high fat diet (HFD) or 30% sucrose in drinking water (HSD) for 24 weeks, and glucose metabolism, gut microbiota composition, as well as bile acid (BA) profile were investigated. In addition, the functional changes of HFD or HSD-induced gut microbiota were further verified by fecal microbiota transplantation (FMT) and ex vivo culture of gut bacteria with BAs. Our results showed that both HFD and HSD caused dysregulated lipid metabolism, while HFD feeding had a more severe effect on impaired glucose homeostasis, accompanied by reduced hyocholic acid (HCA) levels in all studied tissues. Meanwhile, HFD had a more dramatic influence on composition and function of gut microbiota based on α diversity indices, ß diversity analysis, as well as the abundance of secondary BA producers than HSD. In addition, the phenotypes of impaired glucose homeostasis and less formation of HCA caused by HFD can be transferred to recipient mice by FMT. Ex vivo culture with gut bacteria and BAs revealed HFD-altered gut bacteria produced less HCA than HSD, which might closely associate with reduced relative abundance of C7 epimerase-coding bacteria g_norank/unclassified_f_Eggerthellaceae and bile salt hydrolase-producing bacteria Lactobacillus and Bifidobacterium in HFD group. Our findings revealed that the divergent effects of different high-calorie diets on glucose metabolism may be due to the gut microbiota-mediated generation and metabolism of BAs, highlighting the importance of dietary management in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Sacarose , Metabolismo dos Lipídeos , Glucose/farmacologia , Homeostase , Ácidos e Sais Biliares/farmacologia , Camundongos Endogâmicos C57BL
15.
Dev Comp Immunol ; 153: 105107, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38036049

RESUMO

Artificial insemination has been a predominant technique employed in goat husbandry for breeding purposes. Subsequent to artificial insemination, sperm can elicit inflammation in the reproductive tract, resulting in substantial the accumulation of neutrophils. Recognized as foreign entities, sperm may become entrapped within neutrophil extracellular traps (NETs) released by neutrophils, thereby exploiting their properties of pathogen elimination. Deoxyribonuclease I (DNase I), which is known for disintegrating NETs and causing loss of function, has been utilized to ameliorate liver and brain damage resulting from NETs, as well as to enhance sperm quality. This study investigated the mechanism of sperm-induced NETs and further explored the impact of DNase I on NETs. Sperm quality was evaluated using optical microscopy, while the structure of NETs was observed through immunofluorescence staining. The formation mechanism of NETs was examined using inhibitors and PicoGreen. The findings revealed that sperm induced the formation of NETs, a process regulated by glycolysis, NADPH oxidase, ERK1/2, and p38 signaling pathways. The composition of NETs encompassed DNA, citrullinated histone H3 (citH3), and elastase (NE). DNase I protects sperm by degrading NETs, thereby concurrently preserving the integrity of plasma membrane and motility of sperm. In summary, the release of sperm-induced NETs leads to its damage, but this detrimental effect is counteracted by DNase I through degradation of NETs. These observations provide novel insights into reproductive immunity in goats.


Assuntos
Armadilhas Extracelulares , Masculino , Animais , Armadilhas Extracelulares/metabolismo , Cabras , Sêmen , Neutrófilos , Espermatozoides , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/farmacologia
16.
Brain Behav Immun ; 116: 1-9, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984624

RESUMO

OBJECTIVES: To investigate the association between metabolic syndrome (MetS) and anxiety and to explore the mediating role of inflammation indicators in this relationship based on the UK Biobank prospective cohort. METHODS: This population-based retrospective cohort study analyzed data from 308,352 participants. MetS was defined according to criteria jointly developed by the American Heart Association, the National Heart, Lung, and Blood Institute, and the International Diabetes Federation. Anxiety was defined using ICD-10 codes. Cox proportional risk regression models were used to explore the hazard ratios (HRs) between MetS, components of MetS, number of MetS components, and anxiety. The mediating effect of inflammation on the association between MetS and anxiety was explored using longitudinal mediation analysis. RESULTS: A total of 308,352 participants were included in this study. Of these, 9471 (3.071 %) developed anxiety over a mean follow-up of 12.05 years. In the fully adjusted model, MetS increased the risk of anxiety by 13.6 % (HR: 1.136, 95 %CI: 1.085-1.189). All MetS components significantly increased the risk of anxiety, with HRs ranging from 1.066 to 1.165. When MetS was treated as a linear variable, the risk of anxiety increased by 6.5 % per component increment. Age-stratified results showed that the risk of MetS for anxiety was higher among those <55 years (HR: 1.23, 95 %CI: 1.13-1.33) than among those ≥55 years (HR: 1.12, 95 %CI: 1.06-1.18). The mediating effects of platelets, lymphocytes, neutrophils, C-reactive protein, leukocytes, and INFLA scores on the association between MetS and anxiety were significant, with mediating effects of 2.30 %, 7.20 %, 15.9 %, 20.7 %, 22.0 %, and 25.3 %, respectively, and a combined mediating effect of these inflammatory factors was 30.8 % (except for INFLA scores). CONCLUSIONS: MetS and its components significantly increased the risk of anxiety, which increased with the number of components. This association may be partially mediated by serum inflammatory indicators, suggesting that MetS may increase the risk of anxiety by elevating the level of chronic inflammation.


Assuntos
Síndrome Metabólica , Humanos , Pessoa de Meia-Idade , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/complicações , Fatores de Risco , Estudos Retrospectivos , Estudos Prospectivos , Bancos de Espécimes Biológicos , Biobanco do Reino Unido , Inflamação/complicações , Ansiedade/epidemiologia
17.
Nucleic Acids Res ; 52(D1): D747-D755, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37930867

RESUMO

Protists, a highly diverse group of microscopic eukaryotic organisms distinct from fungi, animals and plants, exert crucial roles within the earth's biosphere. However, the genomes of only a small fraction of known protist species have been published and made publicly accessible. To address this constraint, the Protist 10 000 Genomes Project (P10K) was initiated, implementing a specialized pipeline for single-cell genome/transcriptome assembly, decontamination and annotation of protists. The resultant P10K database (https://ngdc.cncb.ac.cn/p10k/) serves as a comprehensive platform, collating and disseminating genome sequences and annotations from diverse protist groups. Currently, the P10K database has incorporated 2959 genomes and transcriptomes, including 1101 newly sequenced datasets by P10K and 1858 publicly available datasets. Notably, it covers 45% of the protist orders, with a significant representation (53% coverage) of ciliates, featuring nearly a thousand genomes/transcriptomes. Intriguingly, analysis of the unique codon table usage among ciliates has revealed differences compared to the NCBI taxonomy system, suggesting a need to revise the codon tables used for these species. Collectively, the P10K database serves as a valuable repository of genetic resources for protist research and aims to expand its collection by incorporating more sequenced data and advanced analysis tools to benefit protist studies worldwide.


Assuntos
Bases de Dados Genéticas , Eucariotos , Fungos , Genoma , Animais , Códon , Eucariotos/genética , Fungos/genética , Plantas/genética
18.
Parasitol Res ; 123(1): 34, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087003

RESUMO

Toxoplasma gondii (T. gondii) exhibits a significantly high prevalence of infection in goats, leading to adverse consequences such as abortion and stillbirth in ewes, thereby posing a substantial challenge to the goat farming industry. Neutrophil extracellular traps (NETs) have been shown to capture T. gondii in goats; however, the precise mechanisms underlying NET release in goats remain poorly understood. Therefore, the aim of our research was to elucidate the involved mechanism. We assessed the cytotoxicity of T. gondii on neutrophils using CCK-8 assay, visualized the structure of T. gondii-induced goat NETs through immunofluorescence, quantified ROS release during T. gondii-induced NET formation using fluorescence microplate analysis, and employed inhibitors targeting TLR 2, TLR4, NADPH oxidase, ERK1/2, and P38 MAPK signaling pathways as well as glycolysis to dissect the mechanisms underlying T. gondii-induced NET release. Within 1 h, T. gondii did not exhibit significant cytotoxicity towards neutrophils in our findings. The formation of typical NET structures induced by T. gondii involved DNA, citrullinated histone 3 (citH3), and neutrophil elastase (NE). Additionally, T. gondii significantly stimulated the release of NETs in goats. The process was accompanied by the production of reactive oxygen species (ROS) mediated through NADPH oxidase, p38, and ERK1/2 signaling pathways. Inhibition of these pathways resulted in a decrease in NET release. Moreover, inhibition of TLR 2, TLR4, and glycolysis also led to a reduction in T. gondii-induced NET release. Overall, our study demonstrates that T. gondii can induce characteristic NET structures and elucidates the involvement of various mechanisms including TLR2/TLR4 signaling pathway activation, NADPH oxidase activity modulation via ROS production regulation through p38 MAPK and ERK1/2 signaling pathways, and glycolysis regulation during the innate immune response against T. gondii infection in goats.


Assuntos
Armadilhas Extracelulares , Toxoplasma , Animais , Feminino , Ovinos , Sistema de Sinalização das MAP Quinases , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Espécies Reativas de Oxigênio/metabolismo , Cabras , Neutrófilos , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo
19.
Cell Chem Biol ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056465

RESUMO

Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.

20.
Chem Commun (Camb) ; 59(88): 13183-13186, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37850377

RESUMO

A metal-organic-framework-based ion trap was designed via tailoring linker functionality as well as free -COOH density. The mixed-linker UiO-66-H2/H4 exhibits higher adsorption for Li+ ions than H4-free UiO-66-H2 because the H4 linker provides an additional -COOH group in the local region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA