Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(18): 18290-18298, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37706683

RESUMO

Lightweight carbon nanotube fibers (CNTFs) with high electrical conductivity and high tensile strength are considered to be an ideal wiring medium for a wide range of applications. However, connecting CNTFs with metals by soldering is extremely difficult due to the nonreactive nature and poor wettability of CNTs. Here we report a strong connection between single-wall CNTFs (SWCNTFs) and a Cu matrix by introducing an intermediate Ni layer, which enables the formation of mechanically strong and electrically conductive joints between SWCNTFs and a eutectic Sn-37Pb alloy. The electrical resistance change rate (ΔR/R0) of Ni-SWCNTF/solder-Cu interconnects only decreases ∼29.8% after 450 thermal shock cycles between temperatures of -196 and 150 °C, which is 8.2 times lower than that without the Ni layer. First-principles calculations indicate that the introduction of the Ni layer significantly improves the heterogeneous interfacial bond strength of the Ni-SWCNTF/solder-Cu connections.

2.
Langmuir ; 38(1): 164-173, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34931850

RESUMO

In this study, electrodeposition combined with anodization was employed to prepare a nanoporous tin oxide film on a pure copper substrate. It was found that annealing temperature played a critically significant role in regulating the crystallinity, pore size, and contents of different oxidation states of the anodized tin oxide film to affect the electrochemical performance. The study verified that SnOx films treated by optimized annealing at 500 °C with precisely controlling the nanoporous morphology and crystallinity displayed competitive specific capacitance at an appropriate ratio of Sn4+ to Sn2+. A maximum specific capacitance of 86.2 mF/cm2 could be achieved at this temperature, and the capacitance retention rate still exceeded 90% even after 8000 charge-discharge cycles. With properly designed annealing treatment, we implemented tin film anodization to obtain an optimized electrode with significantly enhanced electrochemical performance, which shows a promising application in the electrochemical field to prepare electrodes.

3.
Biochem Genet ; 59(5): 1146-1157, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33687637

RESUMO

MiR-133b is considered to be lowly expressed in osteoporosis patients. This study aimed to probe the role and in-depth mechanism of miR-133b in modulating osteoblast biological behavior and differentiation. The differential expressions of miR-133b and GNB4 in patients with osteoporosis and healthy control were analyzed based on the GEO database. Osteoblastic differentiation of hFOB 1.19 cells was induced in the culture medium containing 10 mM ß-glycerophosphate, 50 nm dexamethasone, and 100 µg/ml ascorbic acid. The level of GNB4 was detected using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability and apoptosis were measured by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Western blot was also utilized to measure the levels of osteoblast-related proteins, including ALP, Runx2, Osterix, and OPN. GNB4 was identified and confirmed as a downstream target gene of miR-133b. The expression of miR-133b was declined while the expression of GNB4 was increased in osteoporosis patients. Importantly, up-regulation of miR-133b caused the increase of cell viability and the decrease of apoptosis, which could be blocked by overexpression of GNB4. Also, up-regulation of miR-133b promoted osteoblasts differentiation, as shown by the increase in the expression of ALP, Runx2, Osterix, and OPN. Similarly, this promoting impact resulted from miR-133b overexpression can be reversed via up-regulation of GNB4. These findings revealed that miR-133b can promote the viability and differentiation of osteoblasts by targeting GNB4, hoping to lay a feasible theoretical foundation for the clinical treatment of osteoporosis.


Assuntos
Diferenciação Celular , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , MicroRNAs/genética , Osteoblastos/citologia , Osteogênese , Osteoporose/prevenção & controle , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Subunidades beta da Proteína de Ligação ao GTP/genética , Humanos , Osteoblastos/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA