RESUMO
Stem cell-mediated bio-root regeneration is an alternative tooth replacement strategy; however, physiologically functional bio-root regeneration with distinctive dentin structure remains challenging. In this study, the distinct arrangements of collagen fibril bundles were identified that account for hierarchical structural differences between dentin, cementum, and alveolar bone. Thus, an "engineered pre-dentin" was fabricated, which was a dentin hierarchical structure mimicking collagen (MC) scaffold, with well-aligned hierarchical mineralized collagen fibril bundles. The results revealed that it has a stronger effect on promoting biological root regeneration in nude mice and miniature pigs with dental pulp stem cell (DPSC) and periodontal ligament stem cell (PDLSC) sheets compared to hydroxyapatite tricalcium phosphate (HA/TCP). The success rate in the MC group was also higher than that in the HA/TCP group (67% and 33%, respectively). In conclusion, the hierarchical dentin-mimicking scaffold can enhance the regeneration of bio-roots, which provides a promising strategy for tooth regeneration.
RESUMO
Given that immunotherapy has resulted in a significant overall survival (OS) benefit in advanced-stage disease, it is of notable interest to determine the effectiveness of these agents in early-stage non-small cell lung cancer (NSCLC). The potential exists for the immunotherapeutic approach in early-stage NSCLC to mirror the paradigm seen in advanced NSCLC, wherein survival enhancements have notably benefited the majority of patients. However, their performance in early-stage epidermal growth factor receptor (EGFR) mutant NSCLC is controversial. In the limited studies that included patients with EGFR mutation status, we found unexpected, good survival benefits of perioperative immune checkpoint inhibitors (ICIs) in resectable EGFR-positive NSCLC, which is controversial with those in advanced EGFR-mutant NSCLC. It is possible because of the shift toward immunosuppression that the immune environment undergoes during tumor progression. In the early disease stages, the anti-tumor immune response can be activated with fewer hindrances. In the context of EGFR mutant tumors, intratumor genetic heterogeneity can generate treatment-sensitive and -resistant subclones. The subclonality of the resistant subclone is pivotal in therapy response, with tyrosine kinase inhibitors (TKIs) selectively controlling EGFR-mutant cell proliferation and "competitive release" potentially explaining lower pathological responses in adjuvant TKIs trials. This review delves into emerging data on perioperative treatment modalities for early-stage EGFR mutant NSCLC, exploring unique mechanisms and predictive biomarkers to guide perioperative management strategies.
RESUMO
Lily (Lilium spp.), a horticultural crop serving both ornamental and edible functions, derives its coloration primarily from anthocyanins. However, limited studies have been conducted on the accumulation of anthocyanins within lilies. In this study, we cloned a light-induced transcription factor named as LvBBX24 in lilies. Through genetic and biochemical analysis, we determined that LvBBX24 could upregulate the transcription of LvMYB5 and facilitate anthocyanin synthesis. Moreover, we identified that darkness promoted the degradation of LvBBX24 protein. Through screening a yeast library, we identified LvbZIP44 acts as its interacting partner. Genetic testing confirmed that LvbZIP44 also plays a role in promoting lily anthocyanin synthesis. This indicates a potential synergistic regulatory effect between LvBBX24 and LvbZIP44. Our study indicates that LvBBX24 and LvbZIP44 cooperate to regulate anthocyanin accumulation in lily petals. These findings provide compelling evidence supporting the idea that LvBBX24 and LvbZIP44 may form a looped helix surrounding the LvMYB5 promoter region to regulate anthocyanin biosynthesis.
RESUMO
An efficient chiral phosphoric acid-catalyzed asymmetric aza Friedel-Crafts reaction of 3,4-dihydroisoquinolines and 1-naphthols is described. The reaction provides a general method for the synthesis of diverse chiral tetrahydroisoquinoline with 1-naphthol substituents at the C1-position in excellent yields and enantioselectivities. Based on the conducted mechanistic experiments, a plausible catalytic mechanism was proposed. Moreover, the practicability of the reaction is successfully demonstrated by its application on a gram scale.
RESUMO
Background: Most primary bone tumors are often found in the bone around the knee joint. However, the detection of primary bone tumors on radiographs can be challenging for the inexperienced or junior radiologist. This study aimed to develop a deep learning (DL) model for the detection of primary bone tumors around the knee joint on radiographs. Methods: From four tertiary referral centers, we recruited 687 patients diagnosed with bone tumors (including osteosarcoma, chondrosarcoma, giant cell tumor of bone, bone cyst, enchondroma, fibrous dysplasia, etc.; 417 males, 270 females; mean age 22.8±13.2 years) by postoperative pathology or clinical imaging/follow-up, and 1,988 participants with normal bone radiographs (1,152 males, 836 females; mean age 27.9±12.2 years). The dataset was split into a training set for model development, an internal independent and an external test set for model validation. The trained model located bone tumor lesions and then detected tumor patients. Receiver operating characteristic curves and Cohen's kappa coefficient were used for evaluating detection performance. We compared the model's detection performance with that of two junior radiologists in the internal test set using permutation tests. Results: The DL model correctly localized 94.5% and 92.9% bone tumors on radiographs in the internal and external test set, respectively. An accuracy of 0.964/0.920, and an area under the receiver operating characteristic curve (AUC) of 0.981/0.990 in DL detection of bone tumor patients were for the internal and external test set, respectively. Cohen's kappa coefficient of the model in the internal test set was significantly higher than that of the two junior radiologists with 4 and 3 years of experience in musculoskeletal radiology (Model vs. Reader A, 0.927 vs. 0.777, P<0.001; Model vs. Reader B, 0.927 vs. 0.841, P=0.033). Conclusions: The DL model achieved good performance in detecting primary bone tumors around the knee joint. This model had better performance than those of junior radiologists, indicating the potential for the detection of bone tumors on radiographs.
RESUMO
Development of luminescent segmented heterostructures featuring multiple spatial-responsive blocks is important to achieve miniaturized photonic barcodes toward anti-counterfeit applications. Unfortunately, dynamic manipulation of the spatial color at micro/nanoscale still remains a formidable challenge. Here, a straightforward strategy is proposed to construct spatially varied heterostructures through amplifying the conformation-driven response in flexible lanthanide-metal-organic frameworks (Ln-MOFs), where the thermally induced minor conformational changes in organic donors dramatically modulate the photoluminescence of Ln acceptors. Notably, compositionally and structurally distinct heterostructures (1D and 2D) are further constructed through epitaxial growth of multiple responsive MOF blocks benefiting from the isomorphous Ln-MOF structures. The thermally controlled emissive colors with distinguishable spectra carry the fingerprint information of a specific heterostructure, thus allowing for the effective construction of smart photonic barcodes with spatially responsive characteristics. The results will deepen the understanding of the conformation-driven responsive mechanism and also provide guidance to fabricate complex stimuli-responsive hierarchical microstructures for advanced optical recording and high-security labels.
RESUMO
During the past half-century, although numerous interventions for obesity have arisen, the condition's prevalence has relentlessly escalated annually. Obesity represents a substantial public health challenge, especially due to its robust correlation with co-morbidities, such as colorectal cancer (CRC), which often thrives in an inflammatory tumor milieu. Of note, individuals with obesity commonly present with calcium and vitamin D insufficiencies. Transient receptor potential canonical (TRPC) channels, a subclass within the broader TRP family, function as critical calcium transporters in calcium-mediated signaling pathways. However, the exact role of TRPC channels in both obesity and CRC pathogenesis remains poorly understood. This study set out to elucidate the part played by TRPC channels in obesity and CRC development using a mouse model lacking all seven TRPC proteins (TRPC HeptaKO mice). Relative to wild-type counterparts, TRPC HeptaKO mice manifested severe obesity, evidenced by significantly heightened body weights, augmented weights of epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT), increased hepatic lipid deposition, and raised serum levels of total cholesterol (T-CHO) and low-density lipoprotein cholesterol (LDL-C). Moreover, TRPC deficiency was accompanied by an decrease in thermogenic molecules like PGC1-α and UCP1, alongside a upsurge in inflammatory factors within adipose tissue. Mechanistically, it was revealed that pro-inflammatory factors originating from inflammatory macrophages in adipose tissue triggered lipid accumulation and exacerbated obesity-related phenotypes. Intriguingly, considering the well-established connection between obesity and disrupted gut microbiota balance, substantial changes in the gut microbiota composition were detected in TRPC HeptaKO mice, contributing to CRC development. This study provides valuable insights into the role and underlying mechanisms of TRPC deficiency in obesity and its related complication, CRC. Our findings offer a theoretical foundation for the prevention of adverse effects associated with TRPC inhibitors, potentially leading to new therapeutic strategies for obesity and CRC prevention.
RESUMO
PURPOSE: Gastric cancer is the most common malignancy worldwide and is the third leading cause of cancer-related deaths, urgently requiring an early and non-invasive diagnosis. Circulating extracellular vesicles may emerge as promising biomarkers for the rapid diagnosis in a non-invasive manner. METHODS: Using high-throughput small RNA sequencing, we profiled the small RNA population of serum-derived extracellular vesicles from healthy controls and gastric cancer patients. Differentially expressed microRNAs (miRNAs) were randomly selected and validated by reverse transcription-quantitative real-time polymerase chain reaction. Receiver operating characteristic curves were employed to assess the predictive value of miRNAs for gastric cancer. RESULTS: In this study, 193 differentially expressed miRNAs were identified, of which 152 were upregulated and 41 were signiï¬cantly downregulated. Among the differently expressed miRNA, the expression levels of miR-21-5p, miR-26a-5p, and miR-27a-3p were significantly elevated in serum-derived extracellular vesicles of gastric cancer patients. The miR-21-5p and miR-27a-3p were closely correlated with the tumor size. Moreover, the expression levels of serum miR-21-5p and miR-26a-5p were signiï¬cantly decreased in gastric cancer patients after surgery. CONCLUSIONS: The present study discovered the potential of serum miR-21-5p and miR-26a-5p as promising candidates for the diagnostic and prognostic markers of gastric cancer.
Assuntos
Biomarcadores Tumorais , Vesículas Extracelulares , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/sangue , Neoplasias Gástricas/diagnóstico , MicroRNAs/sangue , MicroRNAs/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Regulação Neoplásica da Expressão GênicaRESUMO
BACKGROUND: Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors, including abdominal obesity, hyperglycemia, hypertension, and dyslipidemia. Gastric cancer (GC) is a common malignancy with significant mortality rates. The relationship between MetS and GC risk remains controversial. This systematic review and meta-analysis aimed to evaluate the correlation between MetS and GC. METHODS: Case-control studies investigating the association between MetS and GC were obtained from various databases, including China National Knowledge Infrastructure (CNKI), SinoMed, Embase, Web of Science, The Cochrane Library, and PubMed. The search was performed from the inception of each database up until September, 2023. Two researchers independently screened the literature, extracted data, and assessed the quality of the included studies. A meta-analysis of the included literature was conducted using Stata 12.0 software. The study protocol is registered in PROSPERO (CRD42023490410). RESULTS: A total of eight studies involving a combined sample size of forty-four thousand eight hundred and seventy participants were included in the meta-analysis. The findings revealed that the risk of developing GC was not significantly associated with body mass index, triglycerides, hypertension, high fasting glucose, or MetS. However, it was found to be positively correlated with high-density lipoprotein cholesterol (OR = 1.69, 95%CI: 1.35-2.12). CONCLUSION: This meta-analysis suggests that MetS is not significantly associated with an increased risk of GC. The risk of GC increases with the presence of individual MetS components, such as high-density lipoprotein cholesterol. Therefore, GC prevention strategies should include lifestyle modifications and targeted interventions to manage MetS and its components. TRIAL REGISTRATION: CRD42023490410 (PROSPERO).
RESUMO
Inflammatory bowel disease (IBD) is characterized by inflammatory conditions in the gastrointestinal tract. According to reports, IBD prevalence is increasing globally, with heavy economic and physical burdens. Current IBD clinical treatment is limited to pharmacological methods; therefore, new strategies are needed. Myeloid-derived growth factor (MYDGF) secreted by bone marrow-derived mononuclear macrophages has beneficial effects in multiple inflammatory diseases. To this end, the present study aimed to establish an experimental IBD mouse model using dextran sulfate sodium in drinking water. MYDGF significantly alleviated DSS-induced colitis, suppressed lymphocyte infiltration, restored epithelial integrity in mice, and decreased apoptosis in the colon tissue. Moreover, the number of M1 macrophages was decreased and that of M2 macrophages was increased by the action of MYDGF. In MYDGF-treated mice, the NF-κB and MAPK pathways were partially inhibited. Our findings indicate that MYDGF could mitigate DSS-induced mice IBD by reducing inflammation and restoring epithelial integrity through regulation of intestinal macrophage polarization via NF-κB and MAPK pathway inhibition. KEY MESSAGES: MYDGF alleviated DSS-induced acute colitis. MYDGF maintains colon epithelial barrier integrity and relieves inflammation. MYDGF regulates colon macrophage polarization. MYDGF partially inhibited the activation of NF-κB and MAPK pathway.
Assuntos
Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Colite/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Masculino , Colo/patologia , Colo/metabolismo , Colo/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacosRESUMO
Capsaicin derivatives with thiourea structure (CDTS) is highly noteworthy owing to its higher analgesic potency in rodent models and higher agonism in vitro. However, the direct synthesis of CDTS remains t one or more shortcomings. In this study, we present reported a green, facile, and practical synthetic method of capsaicin derivatives with thiourea structure is developed by using an automated synthetic system, leading to a series of capsaicin derivatives with various electronic properties and functionalities in good to excellent yields.
Assuntos
Capsaicina , Tioureia , Tioureia/química , Capsaicina/química , Química Verde/métodos , Estrutura Molecular , AnimaisRESUMO
The first catalytic enantioselective construction of chiral THIQUINOL and its derivatives has been accomplished through a chiral phosphoric-acid-catalyzed direct aza-Friedel-Crafts reaction of 3,4-dihydroisoquinolines with 2-naphthols/anthracen-2-ols/phenanthren-9-ol. This method offers a powerful and straightforward synthetic route toward chiral THIQUINOL derivatives with good to excellent yields and enantioselectivities. These structural motifs are crucial chiral components for further transformations into established or potential chiral ligands and catalysis.
RESUMO
Stimuli-responsive micro/nanoscale photonic barcodes show great capacity for encryption and anticounterfeiting technologies due to multiple authentications, yet their application is commonly restricted by invasive stimuli. Herein, we report noninvasive light-stimulated high-security photonic barcodes based on spatially assembled photoresponsive two-dimensional (2D) 1,3,5-benzenetribenzoate (BTB)@Ln-MOF host-guest heterostructures. The photoluminescence (PL) spectra information on BTB@Ln-MOF heterostructures could be precisely controlled by the different wavelengths of ultraviolet (UV) light trigger. By using the PL properties and 2D heterostructures as cryptographic primitives, spatially resolved smart photonic barcodes based on both spectral and graphical coding are realized in BTB@Ln-MOF host-guest materials. These results will pave an avenue for the development of smart stimuli-responsive photonic barcodes for anticounterfeiting applications.
RESUMO
The pandemic and tremendous impact of severe acute respiratory syndrome coronavirus 2 alert us, despite great achievements in prevention and control of infectious diseases, we still lack universal and powerful antiviral strategies to rapidly respond to the potential threat of serious infectious disease. Various highly contagious and pathogenic viruses, as well as other unknown viruses may appear or reappear in human society at any time, causing a catastrophic epidemic. Developing broad-spectrum antiviral drugs with high security and efficiency is of great significance for timely meeting public health emergency and protecting the lives and health of the people. Hence, in this review, we summarized diverse broad-spectrum antiviral targets and corresponding agents from a medicinal chemistry prospective, compared the pharmacological advantages and disadvantages of different targets, listed representative agents, showed their structures, pharmacodynamics and pharmacokinetics characteristics, and conducted a critical discussion on their development potential, in the hope of providing up-to-date guidance for the development of broad-spectrum antivirals and perspectives for applications of antiviral therapy.
Assuntos
Antivirais , Química Farmacêutica , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Humanos , SARS-CoV-2/efeitos dos fármacos , Pandemias , Tratamento Farmacológico da COVID-19 , COVID-19/epidemiologiaAssuntos
Neoplasias Retroperitoneais , Tumores Fibrosos Solitários , Humanos , Tumores Fibrosos Solitários/cirurgia , Tumores Fibrosos Solitários/diagnóstico por imagem , Tumores Fibrosos Solitários/patologia , Neoplasias Retroperitoneais/cirurgia , Neoplasias Retroperitoneais/patologia , Neoplasias Retroperitoneais/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Masculino , Resultado do Tratamento , Feminino , Pessoa de Meia-IdadeRESUMO
The development of bright and long-lived aqueous room-temperature phosphorescent (RTP) materials holds paramount importance in broadening the application scope of RTP material system. However, the conventional RTP materials usually exhibit low efficiency and short lifetime in aqueous solution. Herein, an in situ host-guest strategy is proposed to achieve cyanuric acid (CA)-derived phosphorescent carbon nitrogen dots (CNDs) composite (CNDs@CA) that demonstrates a significant enhancement of both quantum yield (QY) and lifetime mediated by water. Detailed investigations reveal that the robust hydrogen bonding networks between CNDs@CA and water effectively stabilize triplet excitons and suppress nonradiative decays, as well as facilitate efficient energy transfer from CA to CNDs, thereby prolonging the lifetime and enhancing the efficiency of RTP. The phosphorescent QY and lifetime of CNDs@CA can be increased to 26.89% (3.9-fold increase) and 951.25 ms (5.5-fold increase), respectively, with the incorporation of 50 wt% water under ambient conditions. Even in fully aqueous environments (with up to 400 wt% water added), CNDs@CA exhibits persistent water-boosted RTP properties, demonstrating exceptional stability. The robust water-boosted RTP property of CNDs@CA in aqueous solutions presents significant potential for high signal-to-noise ratio afterglow bioimaging as well as advanced information encryption.
RESUMO
INTRODUCTION: Extramammary Paget's disease of the scrotum and penis is a relatively rare cutaneous malignant tumor. At present, its pathogenesis, and clinical and pathological characteristics are not very clear. This is controversial regarding surgical margin width to decrease the high recurrence rate. This paper aimed to report the case and review the literature of extramammary Paget's disease of scrotum and penis. CASE PRESENTATION: We presented the case of a 74-year-old male patient with the patchy erythema and pruritus in the perineum who was admitted to our department. Biopsy of the large plaque revealed Paget disease. Under the condition of ensuring negative surgical margins by rapid frozen pathology, a wide local excision of the lesion, bilateral orchiectomy, and adnexectomy were performed on the patient. Pathology revealed that many scattered vacuolated Paget cells were observed in the epidermal layer, and the diagnosis was Paget's disease of the scrotum and penis. The 2 cm outside the skin lesion was used as the initial surgical margin, and free skin flap transplantation was used to repair the surgical wound. The patient recovered well and was discharged 1 week after surgery. CONCLUSION: Currently, histopathologic biopsy is the most important diagnostic method for EMPD. Once confirmed, for patients eligible for surgical intervention, wide local excision of the lesion and rapid intraoperative frozen pathological examination should be performed as soon as possible. The skin flap transplantation is the first choice for the repair of large-scale wound after surgery.
Assuntos
Doença de Paget Extramamária , Neoplasias Penianas , Escroto , Humanos , Masculino , Doença de Paget Extramamária/cirurgia , Doença de Paget Extramamária/patologia , Doença de Paget Extramamária/diagnóstico , Escroto/patologia , Escroto/cirurgia , Idoso , Neoplasias Penianas/cirurgia , Neoplasias Penianas/patologia , Neoplasias dos Genitais Masculinos/cirurgia , Neoplasias dos Genitais Masculinos/patologia , Neoplasias dos Genitais Masculinos/diagnóstico , Biópsia , Resultado do TratamentoRESUMO
OBJECTIVE: The objective of this study is to assess the correlation between Piezo2 and tumors through a comprehensive meta-analysis and database validation. METHODS: Case-control studies investigating the association between Piezo2 and tumors were obtained from various databases, including China National Knowledge Infrastructure (CNKI), SinoMed, Embase, Web of Science, The Cochrane Library, and PubMed. The search was performed from the inception of each database up until May 2023. Two researchers independently screened the literature, extracted data, and assessed the quality of the included studies. Metaanalysis of the included literature was conducted using Stata 12.0 software. Additionally, the Gene Expression Profiling Interactive Analysis (GEPIA) database predicted a correlation between Piezo2 expression and prognostic value in tumor patients. RESULTS: A total of three studies, involving a combined sample size of 392 participants, were included in the meta-analysis. The findings revealed that the expression level of Piezo2 in tumor patients was not significantly associated with age, gender, or tumor size. However, it was found to be positively correlated with lymphatic invasion (OR = 7.89, 95%CI: 3.96-15.73) and negatively correlated with invasion depth (OR = 0.17, 95%CI: 0.06-0.47), TNM stage (OR = 0.48, 95%CI: 0.27-0.87), and histological grade (OR = 0.40, 95%CI: 0.21-0.77). Confirming these findings, the GEPIA database indicated that high expression of Piezo2 was associated with poor prognosis of disease-free survival in patients with colon adenocarcinoma (HR = 1.6, P = 0.049) and gastric cancer (HR = 1.6, P = 0.017). CONCLUSION: Piezo2 may be associated with poor prognosis and clinicopathological parameters in tumor patients.
Assuntos
Canais Iônicos , Neoplasias , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Prognóstico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/patologia , Bases de Dados Factuais , Relevância ClínicaRESUMO
BACKGROUND: The optimal timing of thoracic radiotherapy (TRT) in driver-gene-negative metastatic non-small cell lung cancer (mNSCLC) patients was retrospectively investigated based on survival and safety profile. METHODS: The efficacy and safety data of driver-gene-negative mNSCLC patients treated with TRT during maintenance after first-line therapy was collected. Patients whose primary tumor and metastatic lesions remained no progression during maintenance and then received TRT were categorized as the NP (no progression) group, while patients who experienced slow progression during maintenance without reaching progressive disease and then received TRT were categorized as the SP (slow progression) group. The efficacy and adverse events of TRT were analyzed. RESULTS: In total, 149 driver-gene-negative mNSCLC patients treated with TRT during maintenance were enrolled into the study, with 119 in the NP group and 30 in the SP group. After a median follow-up of 30.83 (range: 26.62-35.04) months, the median progression-free survival (PFS) in the NP group was 11.13 versus 9.53 months in the SP group (HR 0.599, p = 0.017). The median overall survival (OS) in the NP group was 32.27 versus 25.57 months in the SP group (HR 0.637, p = 0.088). The median PFS after radiotherapy (rPFS) was 6.33 versus 3.90 months (HR 0.288, p < 0.001). The adverse events were tolerable and manageable in both groups without significant difference (p > 0.05). CONCLUSION: The addition of TRT during the pre-emptive no progression phase was associated with a significantly longer PFS than during the delayed slow progression phase and had an acceptable safety profile. Our results might support the earlier initiation of TRT after induction therapy for some patients with driver-gene-negative mNSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos Retrospectivos , Resultado do Tratamento , Estadiamento de NeoplasiasRESUMO
OBJECTIVES: To develop a deep learning (DL) model for differentiating between osteolytic osteosarcoma (OS) and giant cell tumor (GCT) on radiographs. METHODS: Patients with osteolytic OS and GCT proven by postoperative pathology were retrospectively recruited from four centers (center A, training and internal testing; centers B, C, and D, external testing). Sixteen radiologists with different experiences in musculoskeletal imaging diagnosis were divided into three groups and participated with or without the DL model's assistance. DL model was generated using EfficientNet-B6 architecture, and the clinical model was trained using clinical variables. The performance of various models was compared using McNemar's test. RESULTS: Three hundred thirty-three patients were included (mean age, 27 years ± 12 [SD]; 186 men). Compared to the clinical model, the DL model achieved a higher area under the curve (AUC) in both the internal (0.97 vs. 0.77, p = 0.008) and external test set (0.97 vs. 0.64, p < 0.001). In the total test set (including the internal and external test sets), the DL model achieved higher accuracy than the junior expert committee (93.1% vs. 72.4%; p < 0.001) and was comparable to the intermediate and senior expert committee (93.1% vs. 88.8%, p = 0.25; 87.1%, p = 0.35). With DL model assistance, the accuracy of the junior expert committee was improved from 72.4% to 91.4% (p = 0.051). CONCLUSION: The DL model accurately distinguished osteolytic OS and GCT with better performance than the junior radiologists, whose own diagnostic performances were significantly improved with the aid of the model, indicating the potential for the differential diagnosis of the two bone tumors on radiographs. CRITICAL RELEVANCE STATEMENT: The deep learning model can accurately distinguish osteolytic osteosarcoma and giant cell tumor on radiographs, which may help radiologists improve the diagnostic accuracy of two types of tumors. KEY POINTS: ⢠The DL model shows robust performance in distinguishing osteolytic osteosarcoma and giant cell tumor. ⢠The diagnosis performance of the DL model is better than junior radiologists'. ⢠The DL model shows potential for differentiating osteolytic osteosarcoma and giant cell tumor.