Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Hypertens Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877311

RESUMO

Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host. Long-term high salt intake can lead to gut microbiota dysbiosis and cause significant changes in the expression of gut microbiota-related metabolites. Of these metabolites, short chain fatty acids (SCFAs), trimethylamine oxide, amino acids, bile acids, and lipopolysaccharide are essential mediators of microbe-host crosstalk. These metabolites may contribute to the incidence and development of SSH via inflammatory, immune, vascular, and nervous pathways, among others. In addition, recent studies, including those on the histone deacetylase inhibitory mechanism of SCFAs and the blood pressure-decreasing effects of H2S via vascular activation, suggest that several proteins and factors in the classical pathway elicit their effects through multiple non-classical pathways. This review summarizes changes in the gut microbiota and its related metabolites in high-salt environments, as well as corresponding treatment methods for SSH, such as diet management, probiotic and prebiotic use, antibiotic use, and fecal transplantation, to provide new insights and perspectives for understanding SSH pathogenesis and the development of strategies for its treatment.

2.
Chembiochem ; : e202400254, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757240

RESUMO

In this work, a highly sensitive and selective method for detecting folic acid (FA) was developed using D-penicillamine (DPA) stabilized Ag/Cu alloy nanoclusters (DPA@Ag/Cu NCs). The yellow emission of DPA@Ag/Cu NCs was found to be quenched upon the addition of FA to the system. The fluorescence intensity quenching value demonstrated a linear relationship with FA concentrations ranging from 0.01 to 1200 µM, with a limit of detection (LOD) of 5.3 nM. Furthermore, the detection mechanism was investigated through various characterization analyses, including high resolution transmission electron microscopy, fluorescence spectra, ultraviolet-visible absorption spectra, and fluorescence lifetime. The results indicated that the fluorescence quenching induced by FA was a result of electron transfer from FA to the ligands of DPA@Ag/Cu NCs. The selectivity of the FA sensor was also evaluated, showing that common amino acids and inorganic ions had minimal impact on the detection of FA. Moreover, the standard addition method was successfully applied to detect FA in human serum, chewable tablets and FA tablets with promising results. The use of DPA@Ag/Cu NCs demonstrates significant potential for detecting FA in complex biological samples.

3.
Cell Death Discov ; 10(1): 234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750055

RESUMO

Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.

4.
J Hypertens ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38780161

RESUMO

OBJECTIVES: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K+-induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown. METHODS: In this study, we examined the impact of high-K+ intake on renal Na+/K+ transport by determining the expression of major apical Na+ transporters, diuretics responses (as a proxy for specific Na+ transporter function), urinary Na+/K+ excretion, and plasma Na+/K+ concentrations in db/db mice, a model of type 2 diabetes mellitus. RESULTS: Although db/m mice exhibited increased fractional excretion of sodium (FENa) and fractional excretion of potassium (FEK) under high-K+ intake, these responses were largely blunted in db/db mice, suggesting impaired K+-induced natriuresis and kaliuresis in diabetes. Consequently, high-K+ intake increased plasma K+ levels in db/db mice, which could be attributed to the abnormal activity of sodium-hydrogen exchanger 3 (NHE3), sodium-chloride cotransporter (NCC), and epithelial Na+ channel (ENaC), as high-K+ intake could not effectively decrease NHE3 and NCC and increase ENaC expression and activity in the diabetic group. Inhibition of NCC by hydrochlorothiazide could correct the hyperkalemia in db/db mice fed a high-K+ diet, indicating a key role for NCC in K+-loaded diabetic mice. Treatment with metformin enhanced urinary Na+/K+ excretion and normalized plasma K+ levels in db/db mice with a high-K+ diet, at least partially, by suppressing NCC activity. CONCLUSION: Collectively, the impaired K+-induced natriuresis in diabetic mice under high-K+ intake may be primarily attributed to impaired NCC-mediated renal K+ excretion, despite the role of NHE3.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38779755

RESUMO

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis, and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared to control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelia Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ level in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.

6.
Anal Chim Acta ; 1298: 342407, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462332

RESUMO

The accurate diagnosis of diseases can be improved by detecting multiple biomarkers simultaneously. This study presents the development of a magnetic photoelectrochemical (PEC) immunosensor array for the simultaneous detection of amyloid-ß 42 (Aß) and microtubule-associated protein (Tau), which are markers for neurodegenerative disorders. A metal-organic framework (MOF) derivative, Fe2O3@FeS2 magnetic composites with exceptional photoelectric and ferromagnetic properties was synthesized while preserving the original structure and advantages. Thus, the immunoassembly process of the sensor can be carried out in homogeneous solution and recovered by magnetic separation. For simultaneous detection, a chip is divided into multiple independent sensing sites, which have the same preparation and detection environment, allowing for the implementation of a self-calibration method. The sensor array demonstrates considerable detection ranges of 0.01-100 ng mL-1 for Aß and 0.05-100 ng mL-1 for Tau, with low detection limits of 2.1 pg mL-1 for Aß and 7.9 pg mL-1 for Tau. The PEC sensor array proposed in this study exhibits exceptional stability, selectivity, and reproducibility, providing a new method for detecting multiple markers.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio/métodos , Peptídeos beta-Amiloides , Fenômenos Magnéticos , Técnicas Eletroquímicas/métodos , Limite de Detecção
7.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324019

RESUMO

Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.

8.
Org Lett ; 26(8): 1711-1717, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377588

RESUMO

Herein, we report the phosphonylacylation of alkenes via visible-light-induced N-heterocyclic carbene (NHC) catalysis to afford a series of γ-ketophosphonates in moderate to good yields. This protocol features mild conditions, free of photocatalyst, and good compatibility of functional groups. The excited Breslow enolate intermediate was proposed to undergo single-electron transfer with oxime phosphonate to generate the corresponding ketyl radical and phosphonyl radical.

9.
Front Pharmacol ; 15: 1349069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384297

RESUMO

The global prevalence of diabetes mellitus (DM) has led to widespread multi-system damage, especially in cardiovascular and renal functions, heightening morbidity and mortality. Emerging antidiabetic drugs sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 inhibitors (DPP-4i) have demonstrated efficacy in preserving cardiac and renal function, both in type 2 diabetic and non-diabetic individuals. To understand the exact impact of these drugs on cardiorenal protection and underlying mechanisms, we conducted a comprehensive review of recent large-scale clinical trials and basic research focusing on SGLT2i, GLP-1RAs, and DPP-4i. Accumulating evidence highlights the diverse mechanisms including glucose-dependent and independent pathways, and revealing their potential cardiorenal protection in diabetic and non-diabetic cardiorenal disease. This review provides critical insights into the cardiorenal protective effects of SGLT2i, GLP-1RAs, and DPP-4i and underscores the importance of these medications in mitigating the progression of cardiovascular and renal complications, and their broader clinical implications beyond glycemic management.

10.
Talanta ; 272: 125780, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359722

RESUMO

Mercury ion (Hg2+) poses a serious threat to human health due to its high toxicity. In this study, a smartphone-based photoelectrochemical sensor based on oxygen vacancies (OVs) driven signal enhancement for mercury ion detection was designed. BiVO4-x/Bi2S3/AuNPs were combined with T-Hg2+-T recognition mode to construct a multi-sandwich photoelectrochemical sensor. On the one hand, the OVs can increase the adsorption of light by the materials and enhance the photocurrent response as well as the superconductivity of Au NPs to accelerate the charge transfer at the electrode interface. On the other hand, the multi-sandwich structure was exploited to increase the binding site of Hg2+, as well as the T-Hg2+-T structure for sensitive recognition of Hg2+ and signal amplification. The sensor showed good linearity for Hg2+ concentration in the range of 0.1 nM-1.0 µM with a detection limit of 4.8 pM (S/N = 3). Eventually the smartphone-based real-time detection sensor is expected to contribute to the future analysis of heavy metal ions.

11.
Heliyon ; 10(1): e22742, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192835

RESUMO

Background: Continuous light exposure increases sympathetic excitation in rats, leading to hypertension, left ventricular hypertrophy, and fibrosis. This study was aimed to investigate whether continuous light exposure causes destabilization of vital signs and gut microbiota (GM) in Sprague Dawley (SD) rats and whether clonidine hydrochloride (CH), a central sympathetic depressant drug, could prevent these changes. Methods: Eight-week-old male SD rats were divided into three groups with different interventions for 14 weeks: control group (CG), 2-mL pure water gavaged daily while on a normal 12-h light/dark cycle; continuous illumination group (CI), 2-mL pure water gavaged daily while receiving continuous exposure to light (300 lx); and drug administration group (DA), CH (10 µg/kg) gavaged daily while receiving continuous exposure to light (300 lx). Results: The results showed that blood pressure, heart rate, and body weight were significantly higher in the CI group than in the CG and DA groups (P < 0.05). Moreover, the Shannon index was higher in the DA group than in the CI group (P = 0.012). The beta diversity index in the CG group was significantly higher in the CI group (P = 0.039). The pairwise comparison results of the linear discriminant analysis effect size showed that Oscillospirales were enriched in the DA group, whereas the Prevotellaceae lineage (family level) > Prevotella (genus level) > Prevotellaceae_bacterium (species level) were enriched in the CI group. The Muribaculaceae family was more abundant in the CG group than in the CI group. Conclusion: Sympathetic nerve inhibition restored the abnormal vital signs and GM changes under continuous light exposure.

12.
Mater Horiz ; 11(1): 141-150, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916392

RESUMO

Electrochemical hydrogen compression (EHC) is an emerging energy conversion technology. Proton exchange membranes (PEMs) with high proton conductivity and high mechanical strength are highly required to meet the practical requirements of EHC. Herein, ionic covalent organic frameworks (iCOFs) with tunable side chains were synthesized and introduced into the sulfonated poly (ether ether ketone) (SPEEK) matrix to fabricate hybrid PEMs. In our membranes, the rigid iCOFs afford ordered proton conduction channels, whereas the flexible side chains on iCOFs afford abundant proton conduction sites, adaptive hydrogen bonding networks, and high local density short hydrogen bonds for highly efficient proton transport. Moreover, the hydrogen bond interactions between the side chains on iCOFs and the SPEEK matrix enhance the mechanical stability of membranes. As a result, the hybrid PEM acquires an enhanced proton conductivity of 540.4 mS cm-1 (80 °C, 100%RH), a high mechanical strength of 120.41 MPa, and a superior performance (2.3 MPa at 30 °C, 100%RH) in EHC applications.

14.
Nat Commun ; 14(1): 8357, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102128

RESUMO

Teleost fishes, which are the largest and most diverse group of living vertebrates, have a rich history of ancient and recent polyploidy. Previous studies of allotetraploid common carp and goldfish (cyprinids) reported a dominant subgenome, which is more expressed and exhibits biased gene retention. However, the underlying mechanisms contributing to observed 'subgenome dominance' remains poorly understood. Here we report high-quality genomes of twenty-one cyprinids to investigate the origin and subsequent subgenome evolution patterns following three independent allopolyploidy events. We identify the closest extant relatives of the diploid progenitor species, investigate genetic and epigenetic differences among subgenomes, and conclude that observed subgenome dominance patterns are likely due to a combination of maternal dominance and transposable element densities in each polyploid. These findings provide an important foundation to understanding subgenome dominance patterns observed in teleost fishes, and ultimately the role of polyploidy in contributing to evolutionary innovations.


Assuntos
Carpas , Evolução Molecular , Animais , Poliploidia , Genoma/genética , Epigênese Genética , Genoma de Planta
15.
Anal Chem ; 95(45): 16744-16753, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37929302

RESUMO

Tunable detection of microRNA is crucial to meet the desired demand for sample species with varying concentrations in clinical settings. Herein, we present a DNA walker-based molecular circuit for the detection of miRNA-21 (miR-21) with tunable dynamic ranges and sensitivity levels ranging from fM to pM. The phosphate-activated fluorescence of UiO-66-NH2 metal-organic framework nanoparticles was used as label-free fluorescence tags due to their competitive coordination effect with the Zr atom, which significantly inhibited the ligand-to-metal charge transfer. To achieve a tunable detection performance for miR-21, the ultraviolet sensitive o-nitrobenzyl was induced as a photocleavable linker, which was inserted at various sites between the loop and the stem of the hairpin probe to regulate the DNA strand displacement reaction. The dynamic range can be precisely regulated from 700- to 67,000-fold with tunable limits of detection ranging from 2.5 fM to 36.7 pM. Impressively, a Boolean logic tree and complex molecular circuit were constructed for logic computation and cancer diagnosis in clinical blood samples. This intelligent biosensing method presents a powerful solution for converting complex biosensing systems into actionable healthcare decisions and will facilitate early disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , Nanopartículas , DNA , MicroRNAs/genética , Técnicas Biossensoriais/métodos , Limite de Detecção
16.
Anal Chem ; 95(44): 16169-16175, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37878505

RESUMO

A label-free addressable photoelectric immunosensor array was designed for the detection of amyloid ß-proteins based on magnetic separation and self-calibration strategies. In this paper, Na2Ti6O13 with a flower-like morphology was prepared by the hydrothermal method; after continuously combining Fe3O4 and CdS, it was endowed with magnetism and better photoelectric activity. Subsequently, a series of reactions occurred in the solution, and the magnetic separation method was used to enrich the target. On the other hand, the ITO glass was separated into eight sites (2 × 4) using magnets, and a light shield was utilized to prevent light exposure, resulting in addressable and continuous detection. After the uniform preparation of magnetic photoelectric materials and precise control of testing conditions, the relative errors among different sites have been effectively reduced. Moreover, incorporating a self-calibration strategy has allowed the sensor array to achieve greater accuracy. The proposed photoelectrochemical biosensor exhibits a good relationship with amyloid ß-protein ranging from 0.01 to 100 ng mL-1 with a limit of detection of 1.1 pg mL-1 and exhibits excellent specificity, reproducibility, and stability.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Peptídeos beta-Amiloides , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Calibragem , Técnicas Eletroquímicas/métodos , Sulfetos , Limite de Detecção , Imunoensaio/métodos
17.
Parasitol Res ; 122(12): 2859-2870, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801131

RESUMO

Prosthogonimiasis poses a threat to the reproductive system of poultry and wild birds, which are the definitive hosts of the parasite causing this disease. However, the parasite infection of the second intermediate host (dragonfly), the primary vector of this pathogen, is rarely reported. In this study, the prevalence of Prosthogonimus infection in dragonflies was investigated from June 2019 to October 2022 in Heilongjiang Province, northeast China. The species of metacercariae isolated from dragonfly were identified by morphological characteristics, molecular biology techniques, and animal infection experiments. The results showed that 11 species of dragonflies and one damselfly were identified and among six of the dragonflies infected by Prosthogonimus metacercariae, Sympetrum depressiusculum (28.53%) had the highest infection rate among all positive dragonflies, followed by Sympetrum vulgatum (27.86%) and Sympetrum frequens (20.99%), which are preferred hosts, and the total prevalence was 20.39% (2061/10,110) in Heilongjiang Province. Three species of Prosthogoniumus metacercariae were isolated, including Prosthogonimus cuneatus, Prosthogonimus pullucidus, and Prosthogonimus sp., among which P. cuneatus was the dominant species in dragonflies in Heilongjiang Province. This is the first report on the prevalence of Prosthogonimus in dragonflies in China, which provides baseline data for the control of prosthogonimiasis in Heilongjiang Province and a reference for the prevention of prosthogonimiasis in other areas of China.


Assuntos
Odonatos , Trematódeos , Animais , Metacercárias , China/epidemiologia , Prevalência
18.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1403-1409, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37846691

RESUMO

OBJECTIVE: To compare the efficacy of plerixafor (PXF) combined with granulocyte colony-stimulating factor (G-CSF) (PXF+G-CSF) and cyclophosphamide (Cy) combined with G-CSF (Cy+G-CSF) in the mobilization of peripheral blood stem cells (PBSCs) in patients with multiple myeloma (MM). METHODS: The clinical data of 41 MM patients who underwent PBSC mobilization using PXF+G-CSF (18 cases) or Cy+G-CSF (23 cases) in Shanxi Bethune Hospital from January 2019 to December 2021 were retrospectively analyzed, including the count of collected CD34+ cells, acquisition success rate, failure rate, and optimal rate. The correlation of sex, age, disease type, DS staging, ISS staging, number of chemotherapy cycle, disease status before mobilization, and mobilization regimen with the collection results was analyzed, and the adverse reactions, length of hospital stay, and hospitalization costs were compared between the two mobilization regimens. RESULTS: The 41 patients underwent 97 mobilization collections, and the median number of CD34+ cells collected was 6.09 (0-34.07)×106/kg. The acquisition success rate, optimal rate, and failure rate was 90.2%, 56.1%, and 9.8%, respectively. Univariate analysis showed that sex, age, disease type, and disease stage had no significant correlation with the number of CD34+ cells collected and acquisition success rate (P >0.05), but the patients with better disease remission than partial remission before mobilization were more likely to obtain higher CD34+ cell count (P <0.05). The PXF+G-CSF group had a larger number of CD34+ cells and higher acquisition success rate in the first collection than Cy+G-CSF group (both P <0.05), and had lower infection risk and shorter length of hospital stay during mobilization (both P <0.05), but the economic burden increased (P <0.05). CONCLUSION: PXF+G-CSF used for PBSC mobilization in MM patients has high first acquisition success rate, large number of CD34+ cells, less number of collection times, and short length of hospital stay, but the economic cost is heavy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Mieloma Múltiplo , Células-Tronco de Sangue Periférico , Humanos , Antígenos CD34/metabolismo , Ciclofosfamida/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Células-Tronco de Sangue Periférico/metabolismo , Estudos Retrospectivos
19.
Front Microbiol ; 14: 1252563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670992

RESUMO

Two novel chlorinated and nitrogenated azaphilones, namely N-butyl-2-aza-2-deoxychaetoviridin A (1) and N-hexyl-2-aza-2-deoxychaetoviridin A (2), along with a previously identified analogue, chaetoviridin A (3), were successfully obtained from Chaetomium globosum 2020HZ23, a marine algal-sourced endophytic fungus. The planar structures as well as the absolute configurations of these new metabolites were determined utilizing a synergistic approach that involved both spectroscopic techniques (1D/2D NMR and HRESIMS) and Density Functional Theory (DFT) calculations. Each compound was subject to in vitro cytotoxicity evaluation toward the A549 cancer cell line. Both compounds 1 and 2 demonstrated significant cytotoxicity, as evidenced by their respective IC50 values of 13.6 and 17.5 µM. Furthermore, 1 and 2 demonstrated potent cell migration inhibition, which elevated with increasing dose concentration. In contrast, compound 3 exhibited less cytotoxic activity relative to 1 and 2, suggesting that the cytotoxic potency escalates with N-substitution at the C-2 position and the introduction of a side chain. This finding could offer implications for future studies aimed at designing and refining lead compounds within this class.

20.
Anal Chem ; 95(36): 13659-13667, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623910

RESUMO

Conventional electrochemical detection of microRNA (miRNA) encounters issues of poor sensitivity and fixed dynamic range. Here, we report a DNA tile and invading stacking primer-assisted CRISPR-Cas12a multiple amplification strategy to construct an entropy-controlled electrochemical biosensor for the detection of miRNA with tunable sensitivity and dynamic range. To amplify the signal, a cascade amplification of the CRISPR-Cas12a system along with invading stacking primer signal amplification (ISPSA) was designed to detect trace amounts of miRNA-31 (miR-31). The target miR-31 could activate ISPSA and produce numerous DNAs, triggering the cleavage of the single-stranded linker probe (LP) that connects a methylene blue-labeled DNA tile with a DNA tetrahedron to form a Y-shaped DNA scaffold on the electrode. Based on the decrease of current, miR-31 can be accurately and efficiently detected. Impressively, by changing the loop length of the LP, it is possible to finely tune the entropic contribution while keeping the enthalpic contribution constant. This strategy has shown a tunable limit of detection for miRNA from 0.31 fM to 0.56 pM, as well as a dynamic range from ∼2200-fold to ∼270,000-fold. Moreover, it demonstrated satisfactory results in identifying cancer cells with a high expression of miR-31. Our strategy broadens the application of conventional electrochemical biosensing and provides a tunable strategy for detecting miRNAs at varying concentrations.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Entropia , Sistemas CRISPR-Cas/genética , DNA/genética , Eletrodos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA