Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lipids ; 57(6): 313-325, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36098349

RESUMO

Although it is well established that glucocorticoids inactivate thermogenesis and promote lipid accumulation in interscapular brown adipose tissue (IBAT), the underlying mechanisms remain unknown. We found that dexamethasone treatment (1 mg/kg) for 7 days in rats decreased the IBAT thermogenic activity, evidenced by its lower responsiveness to noradrenaline injection associated with reduced content of mitochondrial proteins, respiratory chain protein complexes, noradrenaline, and the ß3 -adrenergic receptor. In parallel, to understand better how dexamethasone increases IBAT lipid content, we also investigated the activity of the ATP citrate lyase (ACL), a key enzyme of de novo fatty acid synthesis, glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, and the three glycerol-3-P generating pathways: (1) glycolysis, estimated by 2-deoxyglucose uptake, (2) glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase activity and pyruvate incorporation into triacylglycerol-glycerol, and (3) direct phosphorylation of glycerol, investigated by the content and activity of glycerokinase. Dexamethasone increased the mass and the lipid content of IBAT as well as plasma levels of glucose, insulin, non-esterified fatty acid, and glycerol. Furthermore, dexamethasone increased ACL and G6PD activities (79% and 48%, respectively). Despite promoting a decrease in the incorporation of U-[14 C]-glycerol into triacylglycerol (~54%), dexamethasone increased the content (~55%) and activity (~41%) of glycerokinase without affecting glucose uptake or glyceroneogenesis. Our data suggest that glucocorticoid administration reduces IBAT thermogenesis through sympathetic inactivation and stimulates glycerokinase activity and content, contributing to increased generation of glycerol-3-P, which is mostly used to esterify fatty acid and increase triacylglycerol content promoting IBAT whitening.


Assuntos
Tecido Adiposo Marrom , Glicerol Quinase , Animais , Ratos , Tecido Adiposo Marrom/metabolismo , Glicerol Quinase/metabolismo , Glucocorticoides , Glicerol , Ratos Wistar , Termogênese , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Dexametasona/metabolismo , Norepinefrina , Tecido Adiposo/metabolismo
2.
Endocrine ; 69(1): 79-91, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297203

RESUMO

PURPOSE: Investigate the pathways of glycerol-3-P (G3P) generation for triacylglycerol (TAG) synthesis in retroperitoneal (RWAT) and epididymal (EWAT) white adipose tissues from high-fat diet (HFD)-fed mice. METHODS: Mice were fed for 8 weeks a HFD and glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into TAG-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol in both tissues. RESULTS: HFD increased body and adipose tissue mass and serum levels of glucose and insulin, which were accompanied by glucose intolerance. RWAT and EWAT from HFD-fed mice had increased rates of de novo fatty acid (FA) synthesis (52% and 255%, respectively). HFD increased lipoprotein lipase (LPL) activity and content in EWAT (107%), but decreased in RWAT (79%). HFD decreased the lipolytic response to norepinephrine (57%, RWAT and 25%, EWAT), ß3-adrenoceptor content (50%), which was accompanied by a decrease in phosphorylated-hormone-sensitive lipase (~80%) and phosphorylated-adipocyte triacylglycerol lipase (~60%) in both tissues. HFD decreased the in vitro rates of glucose uptake (3.5- and 6-fold), as well as in glyceride-glycerol synthesis from pyruvate (~3.5-fold) without changes in PEPCK-C activity and content in RWAT and EWAT, but increased glycerokinase activity(~3-fold) and content (90 and 40%) in both tissues. CONCLUSION: The data suggest that direct phosphorylation of glycerol by glycerokinase may be responsible for maintaining the supply of G3P for the existing rates of FA esterification and TAG synthesis in RWAT and EWAT from HFD-fed mice, contributing, along with a lower lipolytic response to norepinephrine, to higher adiposity.


Assuntos
Dieta Hiperlipídica , Glicerol Quinase , Tecido Adiposo , Tecido Adiposo Branco , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Ratos , Ratos Wistar
3.
J Appl Physiol (1985) ; 128(4): 855-871, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027543

RESUMO

The sympathetic nervous system (SNS) activates cAMP signaling and promotes trophic effects on brown adipose tissue (BAT) through poorly understood mechanisms. Because norepinephrine has been found to induce antiproteolytic effects on muscle and heart, we hypothesized that the SNS could inhibit autophagy in interscapular BAT (IBAT). Here, we describe that selective sympathetic denervation of rat IBAT kept at 25°C induced atrophy, and in parallel dephosphorylated forkhead box class O (FoxO), and increased cathepsin activity, autophagic flux, autophagosome formation, and expression of autophagy-related genes. Conversely, cold stimulus (4°C) for up to 72 h induced thermogenesis and IBAT hypertrophy, an anabolic effect that was associated with inhibition of cathepsin activity, autophagic flux, and autophagosome formation. These effects were abrogated by sympathetic denervation, which also upregulated Gabarapl1 mRNA. In addition, the cold-driven sympathetic activation stimulated the mechanistic target of rapamycin (mTOR) pathway, leading to the enhancement of protein synthesis, evaluated in vivo by puromycin incorporation, and to the inhibitory phosphorylation of Unc51-like kinase-1, a key protein in the initiation of autophagy. This coincided with a higher content of exchange protein-1 directly activated by cAMP (Epac1), a cAMP effector, and phosphorylation of Akt at Thr308, all these effects being abolished by denervation. Systemic treatment with norepinephrine for 72 h mimicked most of the cold effects on IBAT. These data suggest that the noradrenergic sympathetic inputs to IBAT restrain basal autophagy via suppression of FoxO and, in the setting of cold, stimulate protein synthesis via the Epac/Akt/mTOR-dependent pathway and suppress the autophagosome formation, probably through posttranscriptional mechanisms.NEW & NOTEWORTHY The underlying mechanisms related to the anabolic role of sympathetic innervation on brown adipose tissue (BAT) are unclear. We show that sympathetic denervation activates autophagic-lysosomal degradation, leading to a loss of mitochondrial proteins and BAT atrophy. Conversely, cold-driven sympathetic activation suppresses autophagy and stimulates protein synthesis, leading to BAT hypertrophy. Given its high-potential capacity for heat production, understanding the mechanisms that contribute to BAT mass is important to optimize chances of survival for endotherms in cold ambients.


Assuntos
Tecido Adiposo Marrom , Termogênese , Animais , Autofagia , Temperatura Baixa , Lisossomos , Ratos , Sistema Nervoso Simpático
4.
Lipids ; 54(4): 231-244, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31025715

RESUMO

Our previous studies show that cafeteria diet increases body adiposity, plasma insulin levels, and sympathetic activity to brown adipose tissue (BAT) and white adipose tissue (WAT) of Wistar rats, leading to rapid and progressive changes in the metabolic profile. The identification of suitable reference genes that are not affected by the experimental conditions is a critical step in accurate normalization of the reverse transcription quantitative real-time PCR (qRT-PCR), a commonly used assay to elucidate changes in the gene expression profile. In the present study, the effects of the cafeteria diet and sympathetic innervation on the gene expression of adrenoceptor beta 3 (Adrb3) from BAT and WAT were assessed using one of the most stable and one of the least stable genes as normalizers. Rats were fed the cafeteria diet and on the 17th day, interscapular BAT or retroperitoneal WAT was denervated and, 7 days after surgery, the contralateral innervated tissue was used as control. Ten reference genes were evaluated (18S, B2m, Actb, CypA, Gapdh, Hprt1, Rpl32, Tbp, Ubc, and Ywhaz) and ranked according to their stability using the following algorithms: geNorm, NormFinder, BestKeeper, and comparative delta threshold cycle (ΔC t ) method. According to the algorithms employed, the normalization of Adrb3 expression by the least stable genes produced opposite results compared with the most stable genes and literature data. In cafeteria and control diet-fed rats, the three most stable genes were Hprt1, Tbp, and Rpl32 for interscapular BAT and Tbp, B2m, and Hprt1 for retroperitoneal WAT, while the least stable genes were 18S, Actb, and Gapdh for both tissues.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta , Animais , Perfilação da Expressão Gênica , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores Adrenérgicos beta 3/genética
5.
Biochimie ; 150: 16-22, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29705134

RESUMO

We have previously shown that the cafeteria diet increases body fat mass, plasma triacylglycerol (TAG) and insulin levels, glucose uptake by white and brown adipose tissues, as well as the sympathetic activity to both adipose tissues in Wistar rats. The metabolic pathways responsible for the development of non-alcoholic fatty liver disease (NAFLD) were examined in cafeteria diet-fed rats. After 3 weeks offering cafeteria diet, we evaluated: (i) activity of the sympathetic nervous system by norepinephrine turnover rates; (ii) de novo fatty acid synthesis in vivo using 3H2O; (iii) secretion of very low density lipoprotein (VLDL)-TAG secretion measuring serum TAG levels after administration of lipase lipoprotein inhibitor, (iv) liver cytosolic lipases activities and (v) liver mRNA expression of enzymes involved in lipids secretion and oxidation by RT-PCR. The cafeteria diet induced an increase in TAG (120%) and cholesterol (30%) liver contents. Cafeteria diet did not change the sympathetic nervous system activity to liver, but induced a marked increase in the lipogenesis (approximately four-fold) and significant increase in cytosolic lipases activities (46%) and VLDL-TAG secretion (22%) compared to control diet-fed rats. The cafeteria diet also increased the microsomal triglyceride transfer protein (30%) and carnitine palmitoyltransferase I (130%) mRNA expression but decreased the apolipoprotein B100 (26%) mRNA expression. Our findings demonstrate that the increase in the cytosolic lipases activities and VLDL-TAG secretion rates were not able to compensate for the increased lipogenesis rates induced by the cafeteria diet, resulting in NAFLD.


Assuntos
Peso Corporal/fisiologia , Citosol/enzimologia , Fígado/enzimologia , Animais , Glicemia/metabolismo , Carnitina O-Palmitoiltransferase/sangue , Proteínas de Transporte/sangue , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Lipoproteínas VLDL/sangue , Masculino , Hepatopatia Gordurosa não Alcoólica/sangue , Ratos , Ratos Wistar , Triglicerídeos/sangue
6.
Endocrine ; 57(2): 287-297, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28555305

RESUMO

PURPOSE: Investigate the glycerol-3-phosphate generation pathways in epididymal (EPI) and retroperitoneal (RETRO) adipose tissues from dexamethasone-treated rats. METHODS: Rats were treated with dexamethasone for 7 days. Glycerol-3-phosphate generation pathways via glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into triacylglycerol (TAG)-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol. RESULTS: Dexamethasone treatment markedly decreased the body weight, but increased the weight and lipid content of EPI and RETRO and plasma insulin, glucose, non-esterified fatty acid and TAG levels. EPI and RETRO from dexamethasone-treated rats showed increased rates of de novo fatty acid synthesis (80 and 100%) and basal lipolysis (20%). In EPI, dexamethasone decreased the 2-deoxyglucose uptake (50%), as well as glyceroneogenesis, evidenced by a decrease of PEPCK-C activity (39%) and TAG-glycerol synthesis from pyruvate (66%), but increased the glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (72%) in this tissue. In spite of a similar reduction in 2-deoxyglucose uptake in RETRO, dexamethasone treatment increased glyceroneogenesis, evidenced by PEPCK activity (96%), and TAG-glycerol synthesis from pyruvate (110%), accompanied by a decrease in glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (50%). Dexamethasone effects on RETRO were accompanied by a decrease in p-Akt content and by lower insulin effects on the rates of glycerol release in the presence of isoproterenol and on the rates of glucose uptake in isolated adipocytes. CONCLUSION: Our data demonstrated differential regulation of glyceroneogenesis and direct phosphorylation of glycerol by glucocorticoids in EPI and RETRO from rats.


Assuntos
Tecido Adiposo Branco/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Dexametasona/farmacologia , Epididimo/metabolismo , Glucocorticoides/farmacologia , Glicerol/metabolismo , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Glicerol Quinase/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipólise/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (GTP)/biossíntese , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Ratos , Ratos Wistar , Espaço Retroperitoneal , Triglicerídeos/biossíntese
7.
Nutr Res ; 33(6): 494-502, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23746566

RESUMO

We had previously shown that adipose tissue increased in rats fed a low-protein, high-carbohydrate (LPHC) diet (6% protein, 74% carbohydrate) without a simultaneous increase in the de novo fatty acids (FA) synthesis. In addition, impairment in insulin signaling in adipose tissues was observed in these rats. For this study, we hypothesized that the insulin signaling pathway is preserved in the livers from these rats, which contributes to an increase in liver lipogenesis and, consequently, an increase in the weight of the adipose tissue. We also hypothesized that glycerol from triacylglycerol is an important substrate for FA synthesis. Our results showed that administration of the LPHC diet induced an increase in the in vivo rate of total FA synthesis (150%) as well as FA synthesis from glucose (270%) in the liver. There were also increased rates of [U-¹4C]glycerol incorporation into glyceride-FA (15-fold), accompanied by increased glycerokinase content (30%) compared with livers of rats fed the control diet. The LPHC diet did not change the glycerol-3-phosphate generation from either glucose or glyceroneogenesis. There was an increase in the insulin sensitivity in liver from LPHC-fed rats, as evidenced by increases in IR(ß) (35%) levels and serine/threonine protein kinase (AKT) levels (75%), and basal (95%) and insulin-stimulated AKT phosphorylation (105%) levels. The LPHC diet also induced an increase in the liver sterol regulatory element-binding protein-1c content (50%). In summary, these data confirmed the hypothesis that lipogenesis and insulin signaling are increased in the livers of LPHC-fed rats and that glycerol is important not only for FA esterification but also for FA synthesis.


Assuntos
Dieta com Restrição de Proteínas , Carboidratos da Dieta/administração & dosagem , Glicerol Quinase/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Proteínas Alimentares/administração & dosagem , Ácidos Graxos/biossíntese , Glicerol/metabolismo , Glicerofosfatos/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais , Triglicerídeos/metabolismo
8.
Metabolism ; 61(10): 1473-85, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22592131

RESUMO

The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[(14)C]-pyruvate into glycerol-TAG. The denervation provokes a reduction (~70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a ~35% decrease in GyK activity of control rats and a further ~35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low.


Assuntos
Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteínas Alimentares/administração & dosagem , Jejum/metabolismo , Glicerofosfatos/biossíntese , Sistema Nervoso Simpático/fisiologia , Animais , Glicemia/análise , Gluconeogênese , Glucose/metabolismo , Glicerol Quinase/metabolismo , Insulina/sangue , Masculino , Norepinefrina/metabolismo , Ratos , Ratos Wistar , Estreptozocina
9.
Nutrition ; 25(11-12): 1186-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19535223

RESUMO

OBJECTIVE: The aim of this study was to assess the effects of protein restriction in growing rats. METHODS: Rats (approximate weight, 100g) were maintained with low-protein (LP; 6%) or normoproteic (control; 17%) diets, and at the end of the 15th day, hormonal and biochemistry parameters and energetic balance were evaluated. Data were analyzed using Student's t test (with statistical significance set at P < or = .05). RESULTS: LP animals were hyperphagic and showed increased energetic gain (24%) and energy expenditure (EE) compared with controls. The increase in EE was followed by increased sympathetic activity in brown adipose tissue, evidenced by increased norepinephrine turnover, suggesting increased thermogenesis. In spite of hyperphagia, protein ingestion in LP animals was lower than that of controls (P<0.01). The LP diet impaired body growth and caused deep alterations in body chemical composition, with an increase in carcass lipid content (64%) and reductions of protein and water. In LP animals, postprandial glycemia was unchanged, and insulinemia was lower than in controls (P < or = .01). Reduction in fasting glycemia without changes in insulinemia also was detected (P < .01), suggesting increased insulin sensitivity. The LP diet caused a 100% increase in serum leptin (P < .01). CONCLUSIONS: Protein restriction led to an increase in EE, with probable activation of thermogenesis in brown adipose tissue, evidenced by an increase in catecholamines levels. Despite the higher EE, energetic gain and lipids increased. The high level of leptin associated with hyperphagia led to the supposition that these animals are leptin resistant, and the increase in insulin sensitivity, suggested by the relation between insulin and glycemia in fasting and fed animals, might contribute to lipid accumulation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Dieta com Restrição de Proteínas , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Metabolismo Energético , Norepinefrina/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Glicemia , Peso Corporal , Proteínas Alimentares/metabolismo , Hiperfagia/sangue , Insulina/sangue , Resistência à Insulina , Leptina/sangue , Metabolismo dos Lipídeos , Masculino , Período Pós-Prandial , Proteínas/administração & dosagem , Proteínas/metabolismo , Ratos , Ratos Wistar , Sistema Nervoso Simpático/efeitos dos fármacos , Termogênese/fisiologia , Água/fisiologia
10.
Am J Physiol Endocrinol Metab ; 293(5): E1352-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17726141

RESUMO

The pathways of glycerol-3-phosphate (G3P) generation for glyceride synthesis were examined in precision-cut liver slices of fasted and diabetic rats. The incorporation of 5 mM [U-(14)C]glucose into glyceride-glycerol, used to evaluate G3P generation via glycolysis, was reduced by approximately 26-36% in liver slices of fasted and diabetic rats. The glycolytic flux was reduced by approximately 60% in both groups. The incorporation of 1.0 mM [2-(14)C]pyruvate into glyceride-glycerol (glyceroneogenesis) increased approximately 50% and approximately 36% in slices of fasted and diabetic rats, respectively, which also showed a two-fold increase in the activity phosphoenolpyruvate carboxykinase. The increased incorporation of 1.0 mM [2-(14)C]pyruvate into glyceride-glycerol by slices of fasted rats was not affected by the addition of 5 mM glucose to the incubation medium. The activity of glycerokinase and the incorporation of 1 mM [U-(14)C]glycerol into glyceride-glycerol, evaluators of G3P formation by direct glycerol phosphorylation, did not differ significantly from controls in slices of the two experimental groups. Rates of incorporation of 1 mM [2-(14)C]pyruvate and [U-(14)C]glycerol into glucose of incubation medium (gluconeogenesis) were approximately 140 and approximately 20% higher in fasted and diabetic slices than in control slices. It could be estimated that glyceroneogenesis by liver slices of fasted rats contributed with approximately 20% of G3P generated for glyceride-glycerol synthesis, the glycolytic pathway with approximately 5%, and direct phosphorylation of glycerol by glycerokinase with approximately 75%. Pyruvate contributed with 54% and glycerol with 46% of gluconeogenesis. The present data indicate that glyceroneogenesis has a significant participation in the generation of G3P needed for the increased glyceride-glycerol synthesis in liver during fasting and diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Glicerídeos/biossíntese , Glicerofosfatos/metabolismo , Fígado/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Radioisótopos de Carbono , Diabetes Mellitus Experimental/enzimologia , Privação de Alimentos/fisiologia , Glucose/metabolismo , Glicerol/metabolismo , Glicerol Quinase/metabolismo , Técnicas In Vitro , Fígado/enzimologia , Masculino , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
11.
J Exp Zool A Comp Exp Biol ; 301(12): 911-8, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15562451

RESUMO

Resting plasma epinephrine (E) and norepinephrine (N) concentrations for intact toads (Bufo paracnemis) were 5.57+/-1.0 and 0.88+/-0.38 ng/ml, respectively. Exercise induced a significant increase in heart rate, blood pressure and plasma epinephrine (about 4.3 times), whereas norepinephrine remained unchanged. The resting [E]/[N] ratio was 6.3 and increased to 32.9 during exercise. Adrenal denervation did not alter the basal plasma catecholamine or norepinephrine levels after exercise, but prevented the increase in epinephrine during exercise, suggesting that in the intact toad this increase is due to adrenal secretion whereas resting norepinephrine may be liberated by extra-adrenal chromaffin tissues. This also suggests that the adrenal glands can release selectively the two catecholamines. The increases in heart rate and blood pressure in denervated toads were not significantly different from those of intact animals, suggesting that during exercise the sympathetic nerves play the main role in inducing cardiovascular responses. Spinal transection induced a significant increase in basal norepinephrine levels, which remained elevated after exercise. Since spinal toads are unable to perform spontaneous movements it is possible that this increase may be caused by this stressful condition. The increases in heart rate and blood pressure observed in spinal toads during exercise may be due to direct mechanical effects of venous return on the heart.


Assuntos
Glândulas Suprarrenais/metabolismo , Bufonidae/sangue , Epinefrina/sangue , Norepinefrina/sangue , Condicionamento Físico Animal/fisiologia , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/inervação , Animais , Pressão Sanguínea/fisiologia , Bufonidae/fisiologia , Células Cromafins/metabolismo , Denervação , Epinefrina/metabolismo , Feminino , Frequência Cardíaca/fisiologia , Masculino , Norepinefrina/metabolismo , Medula Espinal/cirurgia , Nervos Esplâncnicos/cirurgia
12.
Can J Physiol Pharmacol ; 80(2): 164-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11934259

RESUMO

Although the conversion of lactate to glycogen (glyconeogenesis) in muscle was demonstrated a long time ago, the biochemical reactions responsible for this process are still a controversial matter. In the present study, advantage was taken from the specific inhibition induced by phenylalanine on muscle pyruvate kinase (PK) to investigate the role of reverse PK activity in muscle glyconeogenesis. Addition of phenylalanine to the incubation medium of a preparation of isolated, intact skeletal muscles that maintain metabolic activity for several hours reduced by 50% the rate of incorporation of [14C]lactate or [14C]bicarbonate into muscle glycogen. Muscle extracts presented high levels of maximal activity of PK in the reverse direction, which was completely blocked in the presence of phenylalanine. In contrast, mercaptopicolinic acid, an inhibitor of phosphoenolpyruvate carboxykinase (PEPCK), did not affect the incorporation of 14C from either lactate or bicarbonate into muscle glycogen. Maximal PEPCK activity was much lower in muscle extracts than in gluconeogenic or glyceroneogenic tissues and was suppressed in the presence of mercaptopicolinic acid. The data suggest that a reversal of the metabolic flux through the reaction catalyzed by PK contributes to the accumulation of lactate-derived glycogen that occurs in skeletal muscle under certain physiological conditions.


Assuntos
Glicogênio/biossíntese , Ácido Láctico/metabolismo , Músculo Esquelético/metabolismo , Animais , Bicarbonatos/farmacologia , Radioisótopos de Carbono , Frutose-Bifosfatase/metabolismo , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/farmacologia , Malato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Fenilalanina/farmacologia , Ácidos Picolínicos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA