Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 12(1): 294-305, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33604838

RESUMO

Biotherapeutics are highly efficacious, but the pain and inconvenience of chronic injections lead to poor patient compliance and compromise effective disease management. Despite innumerable attempts, oral delivery of biotherapeutics remains unsuccessful due to their degradation in the gastrointestinal (GI) environment and poor intestinal absorption. We have developed an orally ingestible robotic pill (RP) for drug delivery, which protects the biotherapeutic drug payload from digestion in the GI tract and auto-injects it into the wall of the small intestine as a safe, pain-free injection since the intestines are insensate to sharp stimuli. The payload is delivered upon inflation of a balloon folded within the RP, which deflates immediately after drug delivery. Here we present results from two clinical studies demonstrating the safety, tolerability and performance of the RP in healthy humans. In the first study, three versions of the RP (A, B and C) were evaluated, which were identical in all respects except for the diameter of the balloon. The RP successfully delivered a biotherapeutic (octreotide) in 3 out of 12 subjects in group A, 10 out of 20 subjects in group B and 16 out of 20 subjects in group C, with a mean bioavailability of 65 ± 9% (based on successful drug deliveries in groups A and B). Thus,  reliability of drug delivery with the RP ranged from 25 to 80%, with success rate directly related to balloon size. In a separate study, the deployment of the RP was unaffected by fed or fasting conditions suggesting that the RP may be taken with or without food. These promising clinical data suggest that biotherapeutics currently administered parenterally may be safely and reliably delivered via this versatile, orally ingestible drug delivery platform.


Assuntos
Procedimentos Cirúrgicos Robóticos , Administração Oral , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Voluntários Saudáveis , Humanos , Reprodutibilidade dos Testes
2.
PLoS One ; 14(5): e0217022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31100081

RESUMO

Macrophages aid in clearing synthetic particulates introduced into the body and bridge innate and adaptive immunity through orchestrated secretion of cytokines and chemokines. While the field has made tremendous progress in understanding the effect of particle physicochemical properties on particle-macrophage interactions, it is not known how macrophage functions like cytokine production are affected while presenting active ligands on particles with altered physical properties. Moreover, it is unknown if ligand presentation through an altered particle shape can elicit differential macrophage cytokine responses and if responses are ligand dependent. Therefore, we investigated the influence of geometric particle presentation of diverse ligands, bovine serum albumin, immunoglobulin-G and ovalbumin, on macrophage inflammatory cytokine response. Our results indicate that for similar ligand densities, ligand presentation on rods enhanced production of inflammatory cytokine tumor necrosis factor-alpha (TNF-α) compared to spheres regardless of the nature of the ligand and its cellular receptor. Surprisingly, TNF-α responses were affected by ligand density in a shape-dependent manner and did not correlate to total particle-macrophage association. This study demonstrates the ability of geometric manipulation of particle ligands to alter macrophage cytokine response irrespective of the nature of the ligand.


Assuntos
Citocinas/metabolismo , Ligantes , Macrófagos/metabolismo , Adsorção , Animais , Área Sob a Curva , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Imunoglobulina G/metabolismo , Inflamação , Camundongos , Ovalbumina/metabolismo , Tamanho da Partícula , Poliestirenos/química , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo
3.
Bioeng Transl Med ; 2(1): 92-101, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-29313025

RESUMO

The ability to tune phagocytosis of particle-based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non-phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer-by-layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod-shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc-functionalized particles with macrophages during phagocytosis.

4.
Chem Commun (Camb) ; 51(72): 13814-7, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26236786

RESUMO

Phosphorylcholine co-polymer was assembled on model polystyrene microparticles through a simple, widely-applicable ethanol coating process. The coating rendered particles resistant to protein adsorption and phagocytosis by macrophages, making it useful for a range of biological applications.


Assuntos
Adsorção , Macrófagos/efeitos dos fármacos , Fagocitose , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/farmacologia , Poliestirenos/farmacologia , Animais , Proteínas Sanguíneas/química , Camundongos , Fosforilcolina/química , Fosforilcolina/farmacologia , Ácidos Polimetacrílicos/química , Propriedades de Superfície
5.
Biointerphases ; 10(3): 030801, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26178262

RESUMO

Organisms depend upon complex intercellular communication to initiate, maintain, or suppress immune responses during infection or disease. Communication occurs not only between different types of immune cells, but also between immune cells and nonimmune cells or pathogenic entities. It can occur directly at the cell-cell contact interface, or indirectly through secreted signals that bind cell surface molecules. Though secreted signals can be soluble, they can also be particulate in nature and direct communication at the cell-particle interface. Secreted extracellular vesicles are an example of native particulate communication, while viruses are examples of foreign particulates. Inspired by communication at natural immunological interfaces, biomimetic materials and designer molecules have been developed to mimic and direct the type of immune response. This review describes the ways in which native, biomimetic, and designer materials can mediate immune responses. Examples include extracellular vesicles, particles that mimic immune cells or pathogens, and hybrid designer molecules with multiple signaling functions, engineered to target and bind immune cell surface molecules. Interactions between these materials and immune cells are leading to increased understanding of natural immune communication and function, as well as development of immune therapeutics for the treatment of infection, cancer, and autoimmune disease.


Assuntos
Materiais Biomiméticos/metabolismo , Imunidade Celular , Fatores Imunológicos/metabolismo , Animais , Humanos
6.
Langmuir ; 31(27): 7601-8, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26114616

RESUMO

Polyelectrolyte capsules (PECs) are a promising delivery system that has the ability to carry a large payload of a variety of cargoes. Controlling PEC properties is critical to understanding and tuning their cellular uptake efficiency, kinetics, and mechanism as well as their biodistribution in the body. The lack of a method to independently engineer PEC size, shape, and chemistry impedes both basic understanding of how physicochemical parameters affect PEC behavior in drug delivery and other applications, and the ability to optimize parameters for best function. Here, we report the successful fabrication of PECs having constant surface chemistry with independently controlled size and shape by combining soft organic templates created by the particle stretching method and a modified layer-by-layer (LBL) deposition process. Changing the template dispersion solution during LBL deposition from water to ethanol allowed us to overcome previous issues with organic templates, such as aggregation and template removal. These results will contribute not only to the basic study of the role of capsule shape and size on its function but also to the optimization of capsule properties for drug or imaging carriers, sensors, reactors, and other applications.


Assuntos
Polímeros/química , Eletrólitos/química , Etanol/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA