Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biodivers Data J ; 10: e75910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35095296

RESUMO

BACKGROUND: The Atlantic Forest is one of the most threatened biomes in the world. Despite that, this biome still includes many areas that are poorly known floristically, including several protected areas, such as the "Floresta Nacional do Rio Preto" ("Flona do Rio Preto"), located in the Brazilian State of Espírito Santo. This study used a published vascular plant species list for this protected area from the "Catálogo de Plantas das Unidades de Conservação do Brasil" as the basis to synthesise the species richness, endemism, conservation and new species occurrences found in the "Flona do Rio Preto". NEW INFORMATION: The published list of vascular plants was based on field expeditions conducted between 2018 and 2020 and data obtained from herbarium collections available in online databases. Overall, 722 species were documented for the "Flona do Rio Preto", 711 of which are native to Brazil and 349 are endemic to the Atlantic Forest. In addition, 60 species are geographically disjunct between the Atlantic and the Amazon Forests. Most of the documented species are woody and more than 50% of these are trees. Twenty-three species are threatened (CR, EN and VU), while five are Data Deficient (DD). Thirty-two species are new records for the State of Espírito Santo. Our results expand the knowledge of the flora of the Atlantic Forest and provide support for the development of new conservation policies for this protected area.

2.
Ecol Evol ; 8(11): 5712-5723, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938087

RESUMO

Sandy coastal plant communities in tropical regions have been historically under strong anthropic pressure. In Brazil, these systems shelter communities with highly plastic plant species. However, the potential of these systems to regenerate without human assistance after disturbances has hardly been examined. We determined the natural regeneration of a coastal sandy plain vegetation (restinga) in Brazil, 16 years after the end of sand removal. We inventoried 38 plots: 20 within a sand-mined site and 18 in an adjacent undisturbed site. We expected lower diversity values in the sand-mined site compared to the undisturbed site, but similar species composition between the two sites due to the spatial proximity of the two sites and the high plasticity of restinga species. Species were ranked using abundance and importance value index in both sites, and comparisons were performed using Rényi entropy profiles, rarefaction curves, principal component analysis, and redundancy analysis. Species composition and dominant species differed markedly between the two sites. Bromeliads and Clusia hilariana, well-known nurse plants, dominated the undisturbed site but were almost absent in the regenerating site. Species richness did not differ between both sites, but diversity was higher in the undisturbed site. Within-site composition differences in the mined area were associated with field characteristics. Interestingly, species classified as subordinate or rare in the undisturbed site became dominants in the regenerating site. These newer dominants in the sand-mined site are not those known as nurse plants in other restingas, thus yielding strong implications for restoration.

3.
New Phytol ; 213(3): 1274-1286, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27735064

RESUMO

Leaf mineral composition, the leaf ionome, reflects the complex interaction between a plant and its environment including local soil composition, an influential factor that can limit species distribution and plant productivity. Here we addressed within-species variation in plant-soil interactions and edaphic adaptation using Arabidopsis halleri, a well-suited model species as a facultative metallophyte and metal hyperaccumulator. We conducted multi-element analysis of 1972 paired leaf and soil samples from 165 European populations of A. halleri, at individual resolution to accommodate soil heterogeneity. Results were further confirmed under standardized conditions upon cultivation of 105 field-collected genotypes on an artificially metal-contaminated soil in growth chamber experiments. Soil-independent between- and within-population variation set apart leaf accumulation of zinc, cadmium and lead from all other nutrient and nonessential elements, concurring with differential hypothesized ecological roles in either biotic interaction or nutrition. For these metals, soil-leaf relationships were element-specific, differed between metalliferous and nonmetalliferous soils and were geographically structured both in the field and under standardized growth conditions, implicating complex scenarios of recent ecological adaptation. Our study provides an example and a reference for future related work and will serve as a basis for the molecular-genetic dissection and ecological analysis of the observed phenotypic variation.


Assuntos
Arabidopsis/metabolismo , Elementos Químicos , Meio Ambiente , Geografia , Minerais/metabolismo , Modelos Biológicos , Folhas de Planta/metabolismo , Solo/química , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Característica Quantitativa Herdável , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA