Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 556(7700): 244-248, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618815

RESUMO

Hepatocytes are replenished gradually during homeostasis and robustly after liver injury1, 2. In adults, new hepatocytes originate from the existing hepatocyte pool3-8, but the cellular source of renewing hepatocytes remains unclear. Telomerase is expressed in many stem cell populations, and mutations in telomerase pathway genes have been linked to liver diseases9-11. Here we identify a subset of hepatocytes that expresses high levels of telomerase and show that this hepatocyte subset repopulates the liver during homeostasis and injury. Using lineage tracing from the telomerase reverse transcriptase (Tert) locus in mice, we demonstrate that rare hepatocytes with high telomerase expression (TERTHigh hepatocytes) are distributed throughout the liver lobule. During homeostasis, these cells regenerate hepatocytes in all lobular zones, and both self-renew and differentiate to yield expanding hepatocyte clones that eventually dominate the liver. In response to injury, the repopulating activity of TERTHigh hepatocytes is accelerated and their progeny cross zonal boundaries. RNA sequencing shows that metabolic genes are downregulated in TERTHigh hepatocytes, indicating that metabolic activity and repopulating activity may be segregated within the hepatocyte lineage. Genetic ablation of TERTHigh hepatocytes combined with chemical injury causes a marked increase in stellate cell activation and fibrosis. These results provide support for a 'distributed model' of hepatocyte renewal in which a subset of hepatocytes dispersed throughout the lobule clonally expands to maintain liver mass.


Assuntos
Hepatócitos/citologia , Hepatócitos/enzimologia , Homeostase , Regeneração Hepática , Fígado/citologia , Fígado/lesões , Telomerase/metabolismo , Animais , Linhagem da Célula/genética , Autorrenovação Celular/genética , Feminino , Hepatócitos/metabolismo , Homeostase/genética , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/genética , Masculino , Camundongos , Análise de Sequência de RNA , Telomerase/genética
2.
Stem Cell Reports ; 10(2): 553-567, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29337115

RESUMO

Undifferentiated spermatogonia comprise a pool of stem cells and progenitor cells that show heterogeneous expression of markers, including the cell surface receptor GFRα1. Technical challenges in isolation of GFRα1+ versus GFRα1- undifferentiated spermatogonia have precluded the comparative molecular characterization of these subpopulations and their functional evaluation as stem cells. Here, we develop a method to purify these subpopulations by fluorescence-activated cell sorting and show that GFRα1+ and GFRα1- undifferentiated spermatogonia both demonstrate elevated transplantation activity, while differing principally in receptor tyrosine kinase signaling and cell cycle. We identify the cell surface molecule melanocyte cell adhesion molecule (MCAM) as differentially expressed in these populations and show that antibodies to MCAM allow isolation of highly enriched populations of GFRα1+ and GFRα1- spermatogonia from adult, wild-type mice. In germ cell culture, GFRα1- cells upregulate MCAM expression in response to glial cell line-derived neurotrophic factor (GDNF)/fibroblast growth factor (FGF) stimulation. In transplanted hosts, GFRα1- spermatogonia yield GFRα1+ spermatogonia and restore spermatogenesis, albeit at lower rates than their GFRα1+ counterparts. Together, these data provide support for a model of a stem cell pool in which the GFRα1+ and GFRα1- cells are closely related but show key cell-intrinsic differences and can interconvert between the two states based, in part, on access to niche factors.


Assuntos
Diferenciação Celular/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Espermatogênese/genética , Espermatogônias/citologia , Animais , Antígeno CD146/genética , Linhagem da Célula/genética , Fatores de Crescimento de Fibroblastos/genética , Citometria de Fluxo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Transdução de Sinais/genética , Espermatogônias/crescimento & desenvolvimento , Nicho de Células-Tronco/genética , Células-Tronco/citologia , Testículo/citologia
3.
Genes Dev ; 29(23): 2420-34, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26584619

RESUMO

Telomerase inactivation causes loss of the male germline in worms, fish, and mice, indicating a conserved dependence on telomere maintenance in this cell lineage. Here, using telomerase reverse transcriptase (Tert) reporter mice, we found that very high telomerase expression is a hallmark of undifferentiated spermatogonia, the mitotic population where germline stem cells reside. We exploited these high telomerase levels as a basis for purifying undifferentiated spermatogonia using fluorescence-activated cell sorting. Telomerase levels in undifferentiated spermatogonia and embryonic stem cells are comparable and much greater than in somatic progenitor compartments. Within the germline, we uncovered an unanticipated gradient of telomerase activity that also enables isolation of more mature populations. Transcriptomic comparisons of Tert(High) undifferentiated spermatogonia and Tert(Low) differentiated spermatogonia by RNA sequencing reveals marked differences in cell cycle and key molecular features of each compartment. Transplantation studies show that germline stem cell activity is confined to the Tert(High) cKit(-) population. Telomere shortening in telomerase knockout strains causes depletion of undifferentiated spermatogonia and eventual loss of all germ cells after undifferentiated spermatogonia drop below a critical threshold. These data reveal that high telomerase expression is a fundamental characteristic of germline stem cells, thus explaining the broad dependence on telomerase for germline immortality in metazoans.


Assuntos
Células-Tronco Adultas/enzimologia , Regulação Enzimológica da Expressão Gênica , Espermatogônias/enzimologia , Telomerase/genética , Telomerase/metabolismo , Animais , Diferenciação Celular/genética , Células-Tronco Embrionárias/enzimologia , Citometria de Fluxo , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética
4.
PLoS One ; 10(7): e0131722, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26133370

RESUMO

Telomere shortening is common in bone marrow failure syndromes such as dyskeratosis congenita (DC), aplastic anemia (AA) and myelodysplastic syndromes (MDS). However, improved knowledge of the lineage-specific consequences of telomere erosion and restoration of telomere length in hematopoietic progenitors is required to advance therapeutic approaches. We have employed a reversible murine model of telomerase deficiency to compare the dependence of erythroid and myeloid lineage differentiation on telomerase activity. Fifth generation Tert-/- (G5 Tert-/-) mice with shortened telomeres have significant anemia, decreased erythroblasts and reduced hematopoietic stem cell (HSC) populations associated with neutrophilia and increased myelopoiesis. Intracellular multiparameter analysis by mass cytometry showed significantly reduced cell proliferation and increased sensitivity to activation of DNA damage checkpoints in erythroid progenitors and in erythroid-biased CD150hi HSC, but not in myeloid progenitors. Strikingly, Cre-inducible reactivation of telomerase activity restored hematopoietic stem and progenitor cell (HSPC) proliferation, normalized the DNA damage response, and improved red cell production and hemoglobin levels. These data establish a direct link between the loss of TERT activity, telomere shortening and defective erythropoiesis and suggest that novel strategies to restore telomerase function may have an important role in the treatment of the resulting anemia.


Assuntos
Células Precursoras Eritroides/metabolismo , Hematopoese/genética , Telomerase/metabolismo , Encurtamento do Telômero/genética , Telômero , Anemia Aplástica/genética , Anemia Aplástica/metabolismo , Animais , Proliferação de Células/genética , Dano ao DNA , Camundongos , Camundongos Knockout , Telomerase/genética
5.
Fly (Austin) ; 4(4): 306-11, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20798594

RESUMO

The steroid 20-hydroxy-ecdysone (20-HE) and the sesquiterpenoid Juvenile Hormone (JH) coordinate insect life stage transitions. 20-HE exerts these effects by the sequential induction of response genes. In the nematode Caenorhabditis elegans hormones also play a role in such transitions, but notably, microRNA such as let-7 and lin-4 have likewise been found to help order developmental steps. Little is known about the corresponding function of homologous microRNA in Drosophila melanogaster, and the way microRNA might be regulated by 20-HE in the fly is ambiguous. Here we used Drosophila S2 cells to analyze the effects of 20-HE on D. melanogaster microRNA let-7 and miR-125, the homolog of lin-4. The induction by 20-HE of let-7 and miR-125 in S2 cells is inhibited by RNAi knockdown of the ecdysone receptor and, as previously shown, by knockdown of its cofactor broad-complex C. To help resolve the currently ambiguous role of 20-HE in the control of microRNA, we show that nanomolar concentrations of 20-HE primes cells to subsequently express microRNA when exposed to micromolar levels of 20-HE. We then explore the role microRNA plays in the established relationship between 20-HE and the induction of innate immunity. We show that the 3'UTR of the antimicrobial peptide diptericin has a let-7 binding site and that let-7 represses translation from this site. We conclude that 20-HE facilitates the initial expression of innate immunity while it simultaneously induces negative regulation via microRNA control of antimicrobial peptide translation.


Assuntos
Drosophila melanogaster/metabolismo , Ecdisterona/farmacologia , Imunidade Inata/genética , MicroRNAs/metabolismo , Animais , Células Cultivadas , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/imunologia , MicroRNAs/efeitos dos fármacos , Interferência de RNA , Receptores de Esteroides/antagonistas & inibidores
6.
J Exp Biol ; 211(Pt 16): 2712-24, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18689425

RESUMO

Juvenile hormone (JH) and 20-hydroxy-ecdysone (20E) are highly versatile hormones, coordinating development, growth, reproduction and aging in insects. Pulses of 20E provide key signals for initiating developmental and physiological transitions, while JH promotes or inhibits these signals in a stage-specific manner. Previous evidence suggests that JH and 20E might modulate innate immunity, but whether and how these hormones interact to regulate the immune response remains unclear. Here we show that JH and 20E have antagonistic effects on the induction of antimicrobial peptide (AMP) genes in Drosophila melanogaster. 20E pretreatment of Schneider S2 cells promoted the robust induction of AMP genes, following immune stimulation. On the other hand, JH III, and its synthetic analogs (JHa) methoprene and pyriproxyfen, strongly interfered with this 20E-dependent immune potentiation, although these hormones did not inhibit other 20E-induced cellular changes. Similarly, in vivo analyses in adult flies confirmed that JH is a hormonal immuno-suppressor. RNA silencing of either partner of the ecdysone receptor heterodimer (EcR or Usp) in S2 cells prevented the 20E-induced immune potentiation. In contrast, silencing methoprene-tolerant (Met), a candidate JH receptor, did not impair immuno-suppression by JH III and JHa, indicating that in this context MET is not a necessary JH receptor. Our results suggest that 20E and JH play major roles in the regulation of gene expression in response to immune challenge.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/imunologia , Imunidade Inata/efeitos dos fármacos , Hormônios Juvenis/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Northern Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Ecdisterona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Insetos , Genes Reporter , Metoprene/farmacologia , Regiões Promotoras Genéticas/genética , Receptores de Esteroides/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA