RESUMO
Recently, we derived experimental oscillator strengths (OSs) from well-defined UV-visible absorption spectral peaks of 100 molecules in solution. Here, we focus on a subset of transitions with the highest reliability to further benchmark the OSs from several wave function methods and density functionals. We consider multiple basis sets, transition moment gauges (length, velocity, and mixed), and solvent corrections. Most transitions in the comparison set come from conjugated molecules and have π â π* character. We use an automated algorithm to assign computed transitions to experimental bands. OSs computed using the Tamm-Dancoff approximation (TDA), CIS, or EOM-CCSD exhibited a strong gauge dependence, which is diminished in linear response theories (TD-DFT, TD-HF, and to a smaller degree LR-CCSD). OSs calculated from TD-DFT with PCM solvent models are systematically larger than apparent OSs derived from experimental spectra. For example, fcomp from hybrid functionals and PCM have mean absolute errors that are â¼10% of n·fexp, where n is a solvent refractive index factor that arises from the energy flux of the radiation field in a dielectric (solvent). Theoretical cavity field corrections considering spherical cavities do not improve the agreement between computed and experimental data. Corrections that account for the molecular shape and the direction of transition dipole moments, or that explicitly account for the effect of solvent molecules on the local field, should be more appropriate.
RESUMO
Excited-state quantum chemical calculations usually report excitation energies and oscillator strengths, f, for each electronic transition. On the other hand, UV-visible spectrophotometric experiments measure energy-dependent molar extinction/attenuation coefficients, ε(v), that give absorption band line shapes when plotted. ε(v) and f are related, but this relation is complicated by broadening and solvation effects. We fitted and integrated 100 experimental UV-visible spectra to obtain 164 fexp values for absorption bands appearing in these spectra. The 100 UV-visible spectra belong to solvated organic molecules ranging in size from 6-34 atoms. We estimated uncertainties in the fitting to indicate confidence level in the reported fexp values. The corresponding computed oscillator strengths (fcomp) were obtained with time-dependent density functional theory and a polarizable continuum solvent model. By expressing experimental and computed absorption strengths using a common quantity, we directly compared fcomp and fexp. Although fcomp and fexp are well correlated (linear regression R2 = 0.921), fcomp in most cases overestimated fexp (regression slope = 1.34). The agreement between absolute fcomp and fexp values was substantially improved by accounting for a solvent refractive index factor, as suggested in some derivations in the literature. The 100 digitized UV-visible spectra are included as plain text files in the Supporting Information to aid in benchmarking computational or machine learning methods that aim to simulate realistic UV-visible absorption spectra.
RESUMO
The loss of skeletal muscle mass and strength is known as sarcopenia; it is characterized as a progressive and generalized muscle disorder associated with aging. This deterioration can seriously compromise the elderly's health and reduce their quality of life. In addition to age, there are other factors that induce muscle mass loss, among which are sedentary lifestyle, chronic diseases, inflammation, and obesity. In recent years, a new clinical condition has been observed in older adults that affects their physical capacities and quality of life, which is known as osteosarcopenic obesity (OSO). Osteoporosis, sarcopenia, and obesity coexist in this condition. Physical exercise and nutritional management are the most widely used interventions for the treatment and prevention of sarcopenia. However, in older adults, physical exercise and protein intake do not have the same outcomes observed in younger people. Here, we used a low-intensity exercise routine for a long period of time (LIERLT) in order to delay the OSO appearance related to sedentarism and aging in female Wistar rats. The LIERLT routine consisted of walking at 15 m/min for 30 min, five days a week for 20 months. To evaluate the effects of the LIERLT routine, body composition was determined using DXA-scan, additionally, biochemical parameters, inflammatory profile, oxidative protein damage, redox state, and serum concentration of GDF-11 at different ages were evaluated (4, 8, 12, 18, 22, and 24 months). Our results show that the LIERLT routine delays OSO phenotype in old 24-month-old rats, in a mechanism involving the decrease in the inflammatory state and oxidative stress. GDF-11 was evaluated as a protein related to muscle repair and regeneration; interestingly, rats that perform the LIERLT increased their GDF-11 levels.
Assuntos
Fatores de Diferenciação de Crescimento/metabolismo , Inflamação/fisiopatologia , Osteoporose/prevenção & controle , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/métodos , Sarcopenia/prevenção & controle , Animais , Feminino , Ratos , Ratos WistarRESUMO
In the central nervous system (CNS), senescent astrocytes have been associated with neurodegeneration. Senescent cells secrete a complex mixture of pro-inflammatory factors, which are collectively called Senescence Associated Secretory Phenotype (SASP). The SASP components can vary depending on the cell type, senescence inducer and time. The SASP has been mainly studied in fibroblasts and epithelial cells, but little is known in the context of the CNS. Here, the SASP profile in senescent astrocytes isolated from Wistar newborn rats induced to senescence by oxidative stress or by proteasome inhibition was analyzed. Senescent astrocytes secreted predominantly chemokines and IL-1α, but no IL-6. The effect of the anti-inflammatory drugs, sulforaphane (SFN) and dehydroepiandrosterone (DHEA), on the SASP profile was evaluated. Our results showed that SFN and DHEA decreased IL-1α secretion while increasing IL-10, thus modifying the SASP to a less anti-inflammatory profile. Primary neurons were subjected to the conditioned media obtained from drug-treated senescent astrocytes, and their mitochondrial membrane potential was evaluated.
Assuntos
Astrócitos , Senescência Celular , Sistema Nervoso Central , Desidroepiandrosterona/farmacologia , Isotiocianatos/farmacologia , Neurônios , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/imunologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Inflamação , Interleucina-1alfa/imunologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , SulfóxidosRESUMO
Aging is considered a systemic, chronic and low-grade inflammatory state, called "inflammaging", which has been contemplated as a risk factor for cancer development and progression in the elderly population. Cellular senescence is a multifactorial phenomenon of growth arrest and distorted function, which has been recognized as a contributor to aging. Senescent cells have an altered secretion pattern called Senescent Associated Secretory Phenotype (SASP), that comprise a complex mix of factors including cytokines, growth factors, chemokines and matrix metalloproteinases among others. The SASP secreted by accumulated senescent cells during old age has been related to local inflammation that leads to cellular transformation and therefore may be supporting the inflammaging process. Here, we evaluated if the pro-inflammatory profile within the serum obtained from elderly patients (EPS) was able to induce cellular proliferation in the breast cancer transformed cell line (MCF-7), in a similar way to the proliferation stimulated by the SASP obtained from WI-38 primary cells prematurely induced to senescence by oxidative stress (SIPS). At the same time, the participation of IL-6/IL-8 ratio was determined. Our results showed that not all the EPS increased MCF-7 proliferation. However, there was an interesting relationship between IL-6 and IL-8 concentrations, when the IL-6 was higher than IL-8. Similar results were found with SASP from SIPS-WI-38 on the MCF-7 proliferation. Although it is known that those cytokines are fundamental factors to induce proliferation; the occurrence of other components in the cellular microenvironment is necessary to carry out this effect.
Assuntos
Neoplasias da Mama/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteínas de Neoplasias/metabolismo , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Feminino , Humanos , Inflamação/sangue , Inflamação/patologia , Células MCF-7RESUMO
Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated ß1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in orthopedic bioengineering.
Assuntos
Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese/fisiologia , Adesão Celular/fisiologia , Células Cultivadas , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Fosforilação , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology and uncertain pathogenic mechanisms. Recent studies indicate that the pathogenesis of the disease may involve the abnormal expression of certain developmental pathways. Here we evaluated the expression of Sonic Hedgehog (SHH), Patched-1, Smoothened, and transcription factors glioma-associated oncogene homolog (GLI)1 and GLI2 by RT-PCR, as well as their localization in IPF and normal lungs by immunohistochemistry. The effects of SHH on fibroblast proliferation, migration, collagen and fibronectin production, and apoptosis were analyzed by WST-1, Boyden chamber chemotaxis, RT-PCR, Sircol, and annexin V-propidium iodide binding assays, respectively. Our results showed that all the main components of the Sonic signaling pathway were overexpressed in IPF lungs. With the exception of Smoothened, they were also upregulated in IPF fibroblasts. SHH and GLI2 localized to epithelial cells, whereas Patched-1, Smoothened, and GLI1 were observed mainly in fibroblasts and inflammatory cells. No staining was detected in normal lungs. Recombinant SHH increased fibroblast proliferation (P < 0.05), collagen synthesis, (2.5 ± 0.2 vs. 4.5 ± 1.0 µg of collagen/ml; P < 0.05), fibronectin expression (2-3-fold over control), and migration (190.3 ± 12.4% over control, P < 0.05). No effect was observed on α-smooth muscle actin expression. SHH protected lung fibroblasts from TNF-α/IFN-γ/Fas-induced apoptosis (14.5 ± 3.2% vs. 37.3 ± 7.2%, P < 0.0001). This protection was accompanied by modifications in several apoptosis-related proteins, including increased expression of X-linked inhibitor of apoptosis. These findings indicate that the SHH pathway is activated in IPF lungs and that SHH may contribute to IPF pathogenesis by increasing the proliferation, migration, extracellular matrix production, and survival of fibroblasts.
Assuntos
Proteínas Hedgehog/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Apoptose , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Fibronectinas/genética , Fibronectinas/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Humanos , Fibrose Pulmonar Idiopática/patologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor Smoothened , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de ZincoRESUMO
RATIONALE: Fibrocytes are progenitor cells characterized by the simultaneous expression of mesenchymal, monocyte, and hematopoietic stem cell markers. We previously documented their presence in lungs of patients with idiopathic pulmonary fibrosis. However, the mechanisms involved in their migration, subsequent homing, and local role remain unclear. Matrix metalloproteinases (MMPs) facilitate cell migration and have been implicated in the pathogenesis of pulmonary fibrosis. OBJECTIVES: To evaluate the expression and role of matrix metalloproteinases in human fibrocytes. METHODS: Fibrocytes were purified from CD14(+) monocytes and cultured for 8 days; purity of fibrocyte cultures was 95% or greater as determined by flow cytometry. Conditioned media and total RNA were collected and the expression of MMP-1, MMP-2, MMP-7, MMP-8, and MMP-9 was evaluated by real-time polymerase chain reaction. Protein synthesis was examined using a Multiplex assay, Western blot, fluorescent immunocytochemistry, and confocal microscopy. MMP-2 and MMP-9 enzymatic activities were evaluated by gelatin zymography. Migration was assessed using collagen I-coated Boyden chambers. Stromal cell-derived factor-1α and platelet-derived growth factor-B were used as chemoattractant with or without a specific MMP-8 inhibitor. MEASUREMENTS AND MAIN RESULTS: Fibrocytes showed gene and protein expression of MMP-2, MMP-9, MMP-8, and MMP-7. MMP-2 and MMP-9 enzymatic activities were also demonstrated by gelatin zymography. Likewise, we found colocalization of MMP-8 and MMP-7 with type I collagen in fibrocytes. Fibrocyte migration toward platelet-derived growth factor-B or Stromal cell-derived factor-1α in collagen I-coated Boyden chambers was significantly reduced by a specific MMP-8 inhibitor. CONCLUSIONS: Our findings reveal that fibrocytes express a variety of MMPs and that MMP-8 actively participates in the process of fibrocyte migration.
Assuntos
Movimento Celular/fisiologia , Fibroblastos/enzimologia , Metaloproteinases da Matriz/fisiologia , Western Blotting , Ensaios de Migração Celular , Células Cultivadas , Colágeno/biossíntese , Matriz Extracelular/fisiologia , Humanos , Imunofenotipagem , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Microscopia Confocal , Reação em Cadeia da Polimerase , Fibrose Pulmonar/fisiopatologia , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. Some secreted matrix metalloproteinases (MMPs) as MMP2 are highly upregulated in IPF lungs. Membrane-type (MT)-MMPs participate in the activation of pro-MMP2. However, they have not been examined in IPF. METHODS: Type I transmembrane MT-MMPs, MT1, MT2, MT3, and MT5-MMP were analyzed by real-time PCR and immunohistochemistry in IPF and normal lungs. MMP-2 was also immunolocalized and evaluated by gelatin zymography in BAL fluids. Additionally, the MT-MMPs were examined by real time PCR in lung fibroblasts stimulated with TGF-beta1 and IFN-gamma. RESULTS: MT1-MMP, was the most highly expressed followed by MT2- and MT5-MMP, and by a moderate expression of MT3-MMP. Regarding their localization, MT1- and MT2-MMPs were found in alveolar epithelial cells, MT3-MMP in fibroblasts from fibroblastic foci and alveolar epithelial cells and MT5-MMP in basal bronchiolar epithelial cells and in areas of squamous metaplasia. MMP2 was localized in alveolar and basal bronchiolar epithelial cells and fibroblasts, and increased active enzyme was observed in BAL fluids. In lung fibroblasts, TGF-beta1 induced a strong upregulation of MT3-MMP, both at the gene and protein level. This effect was blocked by genistein, a protein tyrosin kinase inhibitor and partially repressed by SB203580 a p38 MAP kinase inhibitor. IFN-gamma had no effect. CONCLUSIONS: MT-MMPs are expressed in IPF, in the same cell types as MMP2. Mostly by different types of epithelial cells a pivotal component in the aberrant remodeling of the lung microenvironment. Interestingly MT3-MMP that was found in fibroblastic foci was upregulated in vitro by TGF-beta1 a potent profibrotic mediator.
Assuntos
Metaloproteinases da Matriz Associadas à Membrana/análise , Fibrose Pulmonar/enzimologia , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Células Cultivadas , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , Metaloproteinases da Matriz Associadas à Membrana/genética , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. However, the mechanisms involved in matrix remodeling have not been elucidated. In this study, the authors aimed to evaluate the expression of the tissue inhibitors of matrix metalloproteinases (TIMPs) in human fibroblasts and whole tissues from IPF and normal lungs. They also determined the role of mitogen-activated protein kinase (MAPK) in TIMP3 expression. TIMP1, TIMP2, and TIMP3 were highly expressed in lung fibroblasts. Transforming growth factor (TGF)-beta1, a profibrotic mediator, induced strong up-regulation of TIMP3 at the mRNA and protein levels. The authors examined whether the MAPK pathway was involved in TGF-beta1-induced TIMP3 expression. TGF-beta1 induced the phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2. Biochemical blockade of p38 by SB203580, but not of the ERK MAPK pathway, inhibited the effect of this factor. The effect was also blocked by the tyrosine kinase inhibitor genistein and by antagonizing TGF-beta1 receptor type I (activin-linked kinase [ALK5]). In IPF tissues TIMP3 gene expression was significantly increased and the protein was localized to fibroblastic foci and extracellular matrix. Our findings suggest that TGF-beta1-induced TIMP3 may be an important mediator in lung fibrogenesis.