Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(9): e2300076, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226694

RESUMO

Controlling the nano- and micropatterning of metal structures is an important requirement for various technological applications in photonics and biosensing. This work presents a method for controllably creating silver micropatterns by laser-induced photosculpting. Photosculpting is driven by plasmonic interactions between pulsed laser radiation and silver nanorods (AgNRs) in aqueous suspension; this process leads to optical binding forces transporting the AgNRs in the surroundings, while electronic thermalization results in photooxidation, melting, and ripening of the AgNRs into well-defined 3D structures. This work call these structures Airy castles due to their structural similarity with a diffraction-limited Airy disk. The photosculpted Airy castles contain emissive Ag nanoclusters, allowing for the visualization and examination of the aggregation process using luminescence microscopy. This work comprehensively examines the factors that define the photosculpting process, namely, the concentration and shape of the AgNRs, as well as the energy, power, and repetition rate of the laser. Finally, this work investigates the potential applications by measuring the metal-enhanced luminescence of a europium-based luminophore using Airy castles.

2.
ACS Nano ; 17(9): 8083-8097, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37093765

RESUMO

Few-layer black phosphorus (FLBP), a technologically important 2D material, faces a major hurdle to consumer applications: spontaneous degradation under ambient conditions. Blocking the direct exposure of FLBP to the environment has remained the key strategy to enhance its stability, but this can also limit its utility. In this paper, a more ambitious approach to handling FLBP is reported where not only is FLBP oxidation blocked, but it is also repaired postoxidation. Our approach, inspired by nature, employs the antioxidant molecule ß-carotene that protects plants against photooxidative damages to act as a protecting and repairing agent for FLBP. The mechanistic role of ß-carotene is established by a suite of spectro-microscopy techniques, in combination with computational studies and biochemical assays. Transconductance studies on FLBP-based field effect transistor (FET) devices further affirm the protective and reparative effects of ß-carotene. The outcomes indicate the potential for deploying a plethora of natural antioxidant molecules to enhance the stability of other environmentally sensitive inorganic nanomaterials and expedite their translation for technological and consumer applications.


Assuntos
Antioxidantes , beta Caroteno , beta Caroteno/química , Antioxidantes/farmacologia , Fósforo/química , Oxirredução
3.
ACS Sens ; 6(10): 3632-3639, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498459

RESUMO

Unraveling cellular physiological processes via luminescent probes that target specific cellular microenvironments is quite challenging due to the uneven distribution of probes. Herein, we designed a new dynamic excimer (DYNEX) imaging method that involves the sensitive detection of nanosecond-scale dynamic molecular contacts of a fluorescent acridone derivative and reveals the cell microenvironment polarity. Using our method, we specifically tracked cell lipid droplets in fibroblast colon carcinoma cells. These organelles play a central role in metabolic pathways, acting as energy reservoirs in regulatory processes. DYNEX imaging provides the inner polarity of cell lipid droplets, which can be related to lipid contents and metabolic dysfunctions. This new methodology will inspire development of novel multidimensional fluorescent sensors that are able to provide target-specific and orthogonal information at the nanosecond scale.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Microscopia de Fluorescência , Imagem Óptica
4.
Pharmaceutics ; 13(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673228

RESUMO

Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter. We implemented this concept in a medicinal chemistry application by developing an antitumor, metabolic chimeric drug based on the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA). The promising features of the thiophene moiety as a noncharged carrier for targeting mitochondria may represent a starting point for the design of new metabolism-targeting drugs.

5.
Methods Protoc ; 3(4)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187290

RESUMO

The precise knowledge of intracellular polarity, a physiological parameter that involves complex and intertwined intracellular mechanisms, may be relevant in the study of important diseases like cancer or Alzheimer's. In this technical note, we illustrate our recently developed, accurate method for obtaining intracellular polarity maps employing potent fluorescence microscopy techniques. Our method is based on the selection of appropriate luminescent probes, in which several emission properties vary with microenvironment polarity, specifically spectral shifts and luminescence lifetime. A multilinear calibration is performed, correlating polarity vs. spectral shift vs. luminescence lifetime, to generate a powerful and error-free 3D space for reliable interpolation of microscopy data. Multidimensional luminescence microscopy is then used to obtain simultaneously spectral shift and luminescence lifetime images, which are then interpolated in the 3D calibration space, resulting in accurate, quantitative polarity maps.

6.
Chem Commun (Camb) ; 56(41): 5484-5487, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32347241

RESUMO

Two new families of lanthanide antennas are described. 8-Methoxy-4,5-dihydrocyclopenta[de]quinolin-2(1H)-one phosphonates or carboxylates behave as selective antennas exhibiting Eu3+ luminescence in organic solvents, while quinolin-2(1H)-one analogues selectively sensitize the Tb3+ emission. These emissions are quenched by H2O addition. Based on this behaviour, the new lanthanide antennas can be used as highly sensitive water sensors.

7.
Chem Commun (Camb) ; 55(99): 14958-14961, 2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31774422

RESUMO

A simple method for direct detection of microRNAs (miRs) in human serum without the use of polymerase amplification is presented, achieving low miR-122 concentrations and importantly, discerning effectively single-base sequence mutations. The method is based on the capture of target miRs with synthetic peptide nucleic acid oligomers, dynamic chemical labelling, separation with quaternary amine microplatforms and detection using time-gated fluorescence imaging.


Assuntos
MicroRNAs/sangue , Imagem Óptica/métodos , Corantes Fluorescentes/química , Humanos , Limite de Detecção
8.
Front Chem ; 7: 129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915328

RESUMO

Fluorophores of the acridone family have been widely employed in many applications, such as DNA sequencing, the detection of biomolecules, and the monitoring of enzymatic systems, as well as being the bases of intracellular sensors and even antitumoral agents. They have been widely used in fluorescence imaging due to their excellent photophysical properties, in terms of quantum yield and stability. However, frequently, the fluorescence emission data from acridones are not easily interpretable due to complex excited-state dynamics. The formation of π-stacking aggregates and excimers and excited-state proton transfer (ESPT) reactions usually result in emission features that are dependent on the experimental conditions. Therefore, an in-depth understanding of the dynamics involved in the excited-state transients of these dyes is mandatory for their appropriate application. Herein, we synthesized and fully characterized different 2-methoxy-9-acridone dyes. Their transient fluorescence emission spectra exhibited a complex dynamic behavior that can be linked to several excited-state reactions. We performed a thorough study of the excited-state dynamics of these dyes by means of time-resolved fluorimetry supported by computational calculations. All this allowed us to establish a multistate kinetic scheme, involving an ESPT reaction coupled to an excimer formation process. We have unraveled the rich dynamics behind this complex behavior, which provides a better understanding of the excited states of these dyes.

9.
Chem Sci ; 10(4): 1126-1137, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30774910

RESUMO

DNA molecules containing a 1D silver array may be applied for nanotechnology applications, but first their conducting and photoluminescence behavior must be enhanced. Here we have synthesized and characterized three new helical compounds based on stacked silver-mediated cytosine base pairs [Ag(mC)2]X (mC = N1-methylcytosine; X = NO3 (1), BF4 (2) and ClO4 (3)), that contain uninterrupted polymeric AgI chains that run through the center of the helixes, comparable to related silver-DNA structures. The exposure of nanostructures of [Ag(mC)2]BF4 (2) to cold hydrogen plasma stimulates the reduction of the prearranged AgI polymeric chains to metallic silver along the material. This solvent-free reduction strategy leads to the compound [AgI(mC)2]X@Ag0 (2H) that contains uniformly well-distributed silver metallic nanostructures that are responsible for the new conducting and photoluminescence properties of the material. The presence of silver nanostructures alongside compound 2H has been evaluated by means of X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, and X-ray powder diffraction (XRPD). The conducting and photoactive properties of 2H were studied by electrostatic force microscopy (EFM) and conducting-AFM (c-AFM), and photoluminescence microscopy (PL), respectively. The results demonstrate that the presence of well-organized metallic silver nanoentities on the material is responsible for the novel conductivity and photoactive properties of the material. This methodology can be employed for the generation of multifunctional silver-DNA related materials with tailored properties.

10.
ACS Omega ; 3(1): 144-153, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023770

RESUMO

Herein, we describe the synthesis and application of cross-linked polystyrene-based dual-function nano- and microparticles containing both fluorescent tags and metals. Despite containing a single dye, these particles exhibit a characteristic dual-band fluorescence emission. Moreover, these particles can be combined with different metal ions to obtain hybrid metallofluorescent particles. We demonstrate that these particles are easily nanofected into living cells, allowing them to be used for effective fingerprinting in multimodal fluorescence-based and mass spectrometry-based flow cytometry experiments. Likewise, the in situ reductions of the metal ions enable other potential uses of the particles as heterogeneous catalysts.

11.
Chirality ; 30(1): 43-54, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086443

RESUMO

In this paper, we have studied the chiroptical properties of a family of o-oligo(phenyleneethynylene) (o-OPE) derivatives with different steric hindrance. Experimental results show high dissymmetry factors (gabs and glum up to 1.1 × 10-2 ) and very similar electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) for all the derivatives that make this basic o-OPE scaffold a robust pure organic emitter. Vibrational circular dichroism spectra are used to characterize conformational properties in solution. Density functional theory and time-dependent density functional theory calculations support experimental results also proving that ECD and CPL are almost exclusively linked to helical moiety and not to size or conformation of substituents. As chiroptical properties of these emitters are independent of substituents, this OPE scaffold can be used as basic skeleton for the design of sensing probes with high CPL efficiencies.

12.
Langmuir ; 33(26): 6503-6510, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28592111

RESUMO

Gold nanorods are promising platforms for label-free biosensing. We have functionalized gold nanorods with biotin thiol linkers of increasing chain length and evaluated their ability in the molecular detection of streptavidin. We have found an unexpected effect of the increase in linker length, which resulted in a substantial improvement of the plasmon response at surface saturation. The plasmon peak shift increased from 5 to 14 nm, i.e., more than twice the response, between the short and long biotin linkers. This effect is observed only for site-selective tip functionalization, whereas for a full biotin coating there is no improvement observed with the linker length. The improved plasmon response for tip functionalization is attributed to low biotin coverage but is directed to the most sensitive regions, which, combined with a longer chain linker, reduces the steric hindrance for streptavidin binding on the rod's surface. The model sensors were further characterized by measuring their dose-response curves and binding kinetic assays. Simulations of the discrete dipole approximation give theoretical plasmon shifts that compare well with the experimental ones for the long linker but not with those of the short linker, thus suggesting that steric hindrance affects the latter. Our results highlight the importance of specifically functionalizing the plasmonic hot spots in nanoparticle sensors with the adequate density of receptors in order to maximize their response.

13.
Phys Chem Chem Phys ; 17(6): 4319-27, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25574969

RESUMO

We have assessed host-guest interactions between PAMAM dendrimers and charged phthalocyanine probes by Fluorescence Correlation Spectroscopy (FCS). Our results show strong binding in water at low ionic strength with an affinity that decreases from KB ∼ 10(9) to 10(8) M(-1) upon decreasing the phthalocyanine charge of z = -4, -2 and -1. The binding affinity also decreases significantly upon salt addition leading to KB values of ca. 10(5)-10(6) M(-1). The changes of binding affinity probed by varying the phthalocyanine charge, and by changing the ionic strength or pH conditions, allowed us to evaluate the electrostatic contribution (Kel) in dendrimer-phthalocyanine interactions. In particular, this approach afforded values of electrostatic potential for PAMAM dendrimers in water at low ionic strength and at dendrimer concentrations in the nanomolar range. The electrostatic potential of PAMAM generations 4 and 7 are around 50 mV in close agreement with theoretical estimates using the Poisson-Boltzmann cell model. Interestingly, the nonelectrostatic binding is significant and contributes even more than electrostatic binding to dendrimer-phthalocyanine interactions. The nonelectrostatic binding contributes to an affinity of KB above 10(5) M(-1), as measured under conditions of low dendrimer charge and high ionic strength, which makes these dendrimers promising hosts as drug carriers.

14.
J Phys Chem Lett ; 5(8): 1472-8, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-26269996

RESUMO

The diffusion coefficient of charged PAMAM dendrimers was measured by fluorescence correlation spectroscopy in aqueous solution at submicromolar concentrations. The solution pH was varied for conditions ranging from a fully charged to neutral charge dendrimer to infer about electrostatic swelling in the dilute regime. The diffusion coefficient of generation G4 increases by as much as 20% between high and low charge conditions due to the combined effects of polyelectrolyte deswelling and loss of electrolyte dissipation. By taking into account the electrolyte dissipation in the friction factor, we have found that the observed deswelling corresponds to a change of hydrodynamic radius between 7-13% for generation G4 and about 12% for generation G7. Simulations of molecular dynamics of dendrimer G4 show that counterion uptake by the dendrimer structure upon full protonation induces a 16% increase of its radius of gyration. The change in dendrimer size is slightly larger than that previously reported from neutron scattering techniques, thereby suggesting that electrostatic swelling is more pronounced at dilute dendrimer concentration and low ionic strength. It is confirmed that even higher generations, which have more congested molecular structures, can experience some degree of conformational change in response to a change of the dendrimer charge density.

15.
J Fluoresc ; 24(1): 45-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23873208

RESUMO

In this paper we explore the formation and the photophysical properties of the scarcely studied open hydrogen bonded aggregates of 7-Azaindole, 7AI. Thus, we have analyzed the influence that the increase of the 7AI concentration and the decrease of the temperature have on the 7AI photophysics. To help the interpretation of the results, the 7AI-Pyridine system has been used as the model for the analysis of the photophysical properties attributable to the open N(pyrrolic) - H · · · N(pyridinic) hydrogen bonded aggregates. Also, the hydrogen bond interactions have been studied by means of the atom in molecule approach from the Bader theory. Experimental and theoretical results support that the formation of open hydrogen bonded aggregates, (-7AI-)n with n ≥ 2 can efficiently compete with that of the profusely studied centro-symmetric cyclic dimer (7AI)2. Moreover, these aggregates suffer a proton-driven electron transfer process that strongly quenches their room temperature fluorescence and, therefore, masks their presence in the 7AI solutions. Therefore, because most of the studies on the 7AI photophysics have been interpreted without considering the existence of such aggregates and, more important, ignoring its quenching process, many conclusions obtained from these studies should be carefully revised.


Assuntos
Indóis/química , Ligação de Hidrogênio , Estrutura Molecular , Processos Fotoquímicos
16.
Photochem Photobiol ; 88(2): 277-84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22145665

RESUMO

This paper reports a comprehensive photophysical study of the aggregation process of 1-azacarbazole, or α-carboline (9H-pyrido[2,3-b]indole), AC, in low polar aprotic solvents by using absorption, steady state and time-resolved fluorescence spectroscopic techniques. To ascertain the characteristics of the aggregation process we have studied the changes produced by the increase of the AC concentration and the decrease of the temperature on the absorption and fluorescence spectra of the AC monomer. Previously, to aid the interpretation of these results, the hydrogen bonding interactions of the AC monomer with pyridine, PY, and indole, IND, have been also analyzed. The results obtained from these studies reveal that, under our experimental conditions, AC does not form doubly hydrogen bonded cyclic dimers, (AC)(2), but singly hydrogen bonded open dimers, AC-AC, and open higher aggregates, (-AC-)(n). The formation of these species shifts to the red the absorption spectrum of the AC monomer and quenches its fluorescence.


Assuntos
Carbolinas/química , Dimerização , Fluorescência , Ligação de Hidrogênio , Indóis/química , Cinética , Luz , Processos Fotoquímicos , Piridinas/química , Solventes , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica
17.
J Fluoresc ; 22(3): 815-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22147021

RESUMO

The absorption and fluorescence spectra of α-carboline, 9H-pyrido[2,3-b]indole, AC, in organic aprotic solvents containing different water proportions and in acid/base aqueous solutions inside and outside the pH range have been examined. In the organic aprotic solvents, the addition of increasing concentrations of water sequentially quenches and shifts to the red the fluorescence spectra of AC. These spectral changes have been rationalized assuming the formation, at the lower water concentrations, of a discrete ground state non-cyclic weakly fluorescent AC hydrate emitting at 376 nm that, upon increasing the water concentrations, evolves to a higher order AC poly hydrate emitting at 397 nm. The changes of the AC absorption spectra in aqueous acid/basic solutions indicate the existence of three ground state prototropic species; the pyridinic protonated cation, C (pK(a) = 4.10 ± 0.05), the neutral, N (pK(a) = 14.5 ± 0.2), and the pyrrolic deprotonated anion, A. Conversely, the changes of the AC fluorescence spectra in these media indicate the existence of four excited state species emitting at 376 nm, 397 nm, 460 nm and 465 nm. Since the emissions at 376 nm and 397 nm satisfactorily match those of the hydrates observed in the organic-water mixtures, they were consistently assigned to two differently hydrated ground state N species. The remaining emissions at 460 nm and 465 nm have been assigned without ambiguity, on the basis of their excitation spectra, to the C and A species, respectively. The excited-state pK(a)s of the prototropic species of AC have been estimated by using the Förster-Weller cycle.


Assuntos
Carbolinas/química , Absorção , Carbolinas/síntese química , Processos Fotoquímicos , Soluções , Espectrometria de Fluorescência , Água/química
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 84(1): 130-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21968208

RESUMO

The UV-vis electronic absorption and emission spectra of α-carboline or 1-azacarbazole, 9H-pyrido[2,3-b]indole, AC, have been investigated in aprotic solvents. Radiative, k(r), non-radiative, k(nr), rate constants and natural lifetimes, τ(N), of the AC monomer in hexane and acetonitrile, obtained from the experimentally determined fluorescence quantum yields and fluorescence lifetimes, have been compared with those theoretically estimated. The closeness between these experimental and theoretical data, the small Stokes shifts, the mirror image relationship between the absorption and fluorescence spectra and the close correspondence between the absorption and fluorescence excitation spectra, provide good evidences that the emission of AC monomer occurs directly from its lowest singlet excited state. The mono- and multi-parametric analyses of the AC solvatochromism indicate that the polarity-polarizability, the hydrogen bond donor and the hydrogen bond acceptor properties of the solvent preferentially stabilize the singlet excited over the ground state. These analyses also reveal that photoexcitation reinforces the hydrogen bond donor and acceptor properties of the AC, becoming the pyridinic nitrogen atom more basic and the pyrrolic group more acid.


Assuntos
Carbolinas/química , Elétrons , Luz , Fenômenos Físicos , Absorção , Acetonitrilas/química , Hexanos/química , Medições Luminescentes , Soluções , Solventes/química , Espectrofotometria Ultravioleta , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA