Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118746, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513751

RESUMO

Understanding the relative role of dispersal dynamics and niche constraints is not only a core task in community ecology, but also becomes an important prerequisite for bioassessment. Despite the recent progress in our knowledge of community assembly in space and time, patterns and processes underlying biotic communities in alpine glacierized catchments remain mostly ignored. To fill this knowledge gap, we combined the recently proposed dispersal-niche continuum index (DNCI) with traditional constrained ordinations and idealized patterns of species distributions to unravel community assembly mechanisms of different key groups of primary producers and consumers (i.e., phytoplankton, epiphytic algae, zooplankton, macroinvertebrates, and fishes) in rivers in the Qinghai-Tibet Plateau, the World's Third Pole. We tested whether organismal groups with contrasting body sizes differed in their assembly processes, and discussed their applicability in bioassessment in alpine zones. We found that community structure of alpine river biotas was always predominantly explained in terms of dispersal dynamics and historical biogeography. These patterns are most likely the result of differences in species-specific functional attributes, the stochastic colonization-extinction dynamics driven by multi-year glacier disturbances and the repeated hydrodynamic separation among alpine catchments after the rising of the Qilian mountains. Additionally, we found that the strength of dispersal dynamics and niche constraints was partially mediated by organismal body sizes, with dispersal processes being more influential for microscopic primary producers. Finding that zooplankton and macroinvertebrate communities followed clumped species replacement structures (i.e., Clementsian gradients) supports the notion that environmental filtering also contributes to the structure of high-altitude animal communities in glacierized catchments. In terms of the applied fields, we argue that freshwater bioassessment in glacierized catchments can benefit from incorporating the metacommunity perspective and applying novel approaches to (i) detect the optimal spatial scale for species sorting and (ii) identify and eliminate the species that are sensitive to dispersal-related processes.

2.
Philos Trans A Math Phys Eng Sci ; 382(2269): 20230056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342212

RESUMO

Quantitative approaches are needed to complement qualitative explorations to identify sites with unique geodiversity and thereby guide geoconservation and geoheritage programmes. Here, we introduce the concept and associated index of 'geodiversity uniqueness'. This index is based on a numerical analysis of geofeatures and allows the identification of sites with unique geodiversity in a study area. We applied this approach to geofeature data from three areas in Finland. Our results showed that patterns of geodiversity uniqueness varied profoundly among the three study areas and across sites within each area. This was due to different sets of geofeatures and distinct characteristics of each study area. More importantly, the approach presented here was robust across the datasets and selection criteria for sets of sites, showing potential for geoconservation in each study area. The geodiversity uniqueness approach is a promising starting point to identify and map sites with unique geodiversity that can be further verified using field observations. To improve our knowledge of geodiversity variation, complementary approaches providing objective information on contributions to total beta geodiversity are needed to advance geoconservation programmes across areas and different spatial scales. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.

3.
J Anim Ecol ; 92(6): 1176-1189, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994670

RESUMO

Human land-use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land-uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life-history, resource and habitat-use, and body size. The effects of intensive human land-uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land-uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land-uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.


Assuntos
Artrópodes , Ecossistema , Humanos , Animais , Biomassa , Rios/química , Biodiversidade
4.
Sci Total Environ ; 874: 162387, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36848991

RESUMO

Anthropogenic disturbances have become one of the primary causes of biodiversity decline in freshwater ecosystems. Beyond the well-documented loss of taxon richness in increasingly impacted ecosystems, our knowledge on how different facets of α and ß diversity respond to human disturbances is still limited. Here, we examined the responses of taxonomic (TD), functional (FD) and phylogenetic (PD) α and ß diversity of macroinvertebrate communities to human impact across 33 floodplain lakes surrounding the Yangtze River. We found that most pairwise correlations between TD and FD/PD were low and non-significant, whereas FD and PD metrics were instead positively and significantly correlated. All facets of α diversity decreased from weakly to strongly impacted lakes owing to the removal of sensitive species harboring unique evolutionary legacies and phenotypes. By contrast, the three facets of ß diversity responded inconsistently to anthropogenic disturbance: while FDß and PDß showed significant impairment in moderately and strongly impacted lakes as a result of spatial homogenization, TDß was lowest in weakly impacted lakes. The multiple facets of diversity also responded differently to the underlying environmental gradients, re-emphasizing that taxonomic, functional and phylogenetic diversities provide complementary information on community dynamics. However, the explanatory power of our machine learning and constrained ordination models was relatively low and suggests that unmeasured environmental features and stochastic processes may strongly contribute to macroinvertebrate communities in floodplain lakes suffering from variable levels of anthropogenic degradation. We finally suggested guidelines for effective conservation and restoration targets aimed at achieving healthier aquatic biotas in a context of increasing human impact across the 'lakescape' surrounding the Yangtze River, the most important being the control of nutrient inputs and increased spatial spillover effects to promote natural metasystem dynamics.


Assuntos
Efeitos Antropogênicos , Ecossistema , Humanos , Rios , Filogenia , Biodiversidade , Lagos
5.
Trends Plant Sci ; 28(6): 646-660, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36628654

RESUMO

Freshwater ecosystems are of worldwide importance for maintaining biodiversity and sustaining the provision of a myriad of ecosystem services to modern societies. Plants, one of the most important components of these ecosystems, are key to water nutrient removal, carbon storage, and food provision. Understanding how the functional connection between freshwater plants and ecosystems is affected by global change will be key to our ability to predict future changes in freshwater systems. Here, we synthesize global plant responses, adaptations, and feedbacks to present-day and future freshwater environments through trait-based approaches, from single individuals to entire communities. We outline the transdisciplinary knowledge benchmarks needed to further understand freshwater plant biodiversity and the fundamental services they provide.


Assuntos
Ecossistema , Água Doce , Biodiversidade , Água , Plantas
6.
Sci Adv ; 8(49): eadd5040, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36475805

RESUMO

It has long been debated why groups such as non-avian dinosaurs became extinct whereas mammals and other lineages survived the Cretaceous/Paleogene mass extinction 66 million years ago. We used Markov networks, ecological niche partitioning, and Earth System models to reconstruct North American food webs and simulate ecospace occupancy before and after the extinction event. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of megaherbivores, but dinosaur niches were otherwise stable and static, potentially contributing to their demise. Smaller vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of niche limits beginning in the latest Cretaceous and continuing after the mass extinction. Mammals did not simply proliferate after the extinction event; rather, their earlier ecological diversification might have helped them survive.

7.
Animals (Basel) ; 12(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35804620

RESUMO

Environmental filtering, spatial factors and species interactions are fundamental ecological mechanisms for community organisation, yet the role of such interactions across different environmental and spatial settings remains mostly unknown. In this study, we investigated fish community organisation scenarios and seasonal species-to-species associations potentially reflecting biotic associations along the Qiupu River (China). Based on a latent variable approach and a tree-based method, we compared the relative contribution of the abiotic environment, spatial covariates and potential species associations for variation in the community structure, and assessed whether different assembly scenarios were modulated by concomitant changes in the interaction network structure of fish communities across seasons. We found that potential species associations might have been underestimated in community-based assessments of stream fish. Omnivore species, since they have more associations with other species, were found to be key components sustaining fish interaction networks across different stream orders. Hence, we suggest that species interactions, such as predation and competition, likely played a key role in community structure. For instance, indices accounting for network structure, such as connectance and nestedness, were strongly correlated with the unexplained residuals from our latent variable approach, thereby re-emphasising that biotic signals, potentially reflecting species interactions, may be of primary importance in determining stream fish communities across seasons. Overall, our findings indicate that interaction network structures are a powerful tool to reflect the contribution of potential species associations to community assembly. From an applied perspective, this study should encourage freshwater ecologists to empirically capture and manage biotic constraints in stream ecosystems across different geographical and environmental settings, especially in the context of the ever-increasing impacts of human-induced local extinction debts and species invasions.

8.
Environ Res ; 204(Pt B): 112055, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34536372

RESUMO

Body size descriptors and associated resemblance measurements may provide useful tools for forecasting ecological responses to increasing anthropogenic land‒use disturbances. Yet, the influences of agriculture and urbanisation on the size structure of biotic assemblages have seldom been investigated in running waters. Using a comprehensive dataset on stream macroinvertebrates from 21 river basins across Western Finland, we assessed whether the structure of assemblages via changes in taxonomic composition and body size distributions responded predictably to anthropogenic land‒use impacts. Specifically, we applied a combination of resemblance measurements based on cumulative abundance profiles and spatially constrained null models to understand faunal impairment by agricultural and urban development, and the most likely mechanisms underlying the observed shifts in assemblage size structure. Anthropogenically impacted stream sites showed less variation in assemblage composition and size distributions compared with least‒disturbed sites, with strong declines in internal variation also occurring for the transition from near‒pristine to moderately impacted landscapes. These results were consistent whether based on species‒level or genus‒level data. Variation in assemblage size structure seemed to be more predictable than taxonomic composition, supporting the notion that resemblance measurements based on body size distributions can represent an improvement to more traditional approaches based on taxonomic identities alone. In addition, we showed that macroinvertebrate assemblages resulted from effects of land‒use degradation mediated through local conditions and spurious spatial structures in the distribution of anthropogenic activities across the landscape. Overall, our findings suggest that existing water policies and agri‒environment schemes should be guided not only by understanding the individual effects of agricultural and urban development on taxonomic composition at a given stream site. Rather, we should also acknowledge the size structure of stream assemblages and whether concomitant changes in local conditions and the non‒random distribution of human infrastructures are likely to mitigate or accelerate these effects.


Assuntos
Efeitos Antropogênicos , Invertebrados , Agricultura , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Rios , Água
9.
Sci Total Environ ; 786: 147491, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33965814

RESUMO

Patterns of species rarity have long fascinated ecologists, yet most of what we know about the natural world stems from studies of common species. A large proportion of freshwater plant species has small range sizes and are therefore considered rare. However, little is known about the mechanisms and geographical distribution of rarity in the aquatic realm and to what extent diversity of rare species in freshwater plants follows their terrestrial counterparts. Here, we present the first in-depth analysis of geographical patterns, potential deterministic ecogeographical factors and projected scenarios of freshwater vascular plant rarity using 50 × 50 km grid cells across Europe (41°N-71°N) and North America (25°N-78°N). Our results suggest that diversity of rare species shows different patterns in relation to latitude on the two continents, and that hotspots of rarity concentrate in a relatively small proportion of the European and North American land surface, especially in mountainous as well as in climatically rare and stable areas. Interestingly, we found no differences among alternative rarity definitions and measures when delineating areas with notably high diversity of rare species. Our findings also indicate that few variables, namely a combination of current climate, Late Quaternary climate-change velocity and human footprint, are able to accurately predict the location of continental centers of rare species diversity. However, these relationships are not geographically homogeneous, and the underlying factors likely act synergistically. Perhaps more importantly, we provide empirical evidence that current centers of rare species diversity are characterized by higher anthropogenic impacts and might shrink disproportionately within this century as the climate changes. Our reported distributional patterns of species rarity align with the known trends in species richness of other freshwater organisms and may help conservation planners make informed decisions mitigating the effects of climate change and other anthropogenic impacts on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Europa (Continente) , Água Doce , Humanos , América do Norte
10.
Sci Total Environ ; 786: 147410, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971606

RESUMO

Diatoms are important organisms in freshwater ecosystems due to their position as primary producers and therefore, analyzing their assemblages provides relevant information on ecosystem functioning. Diatoms have historically been identified based on morphological traits, which is time-consuming and requires well-trained specialists. Nevertheless, DNA barcoding offers an alternative approach to overcome some limitations of the morphological method. Here, we assess if both approaches are comparable methods to study patterns and mechanisms (including environmental filtering and dispersal limitation) of epiphytic diatom metacommunities using a comprehensive dataset from 22 Mediterranean ponds at different taxonomic resolutions. We used a fragment of rbcL barcode gene combined with High-Throughput Sequencing to infer diatom community composition. The overall degree of correspondence between both approaches was assessed by Procrustean rotation analysis and Procrustean randomization tests, whereas the role of local environmental variables and geographical distances was studied using a comprehensive combination of BIOENV, Mantel tests and distance-based redundancy analysis. Our results showed a relatively poor correspondence in the compositional variation of diatom metacommunity between both approaches. We speculate that the incompleteness of the reference database and the bioinformatics processing are the biases most likely affecting the molecular approach, whereas the limited counting effort and the presence of cryptic species are presumably the major biases related with the morphological method. On the other hand, variation in diatom community composition detected with both approaches was strongly related to the environmental template, which may be related with the narrow community-environment relationships in diatoms. Nevertheless, we found no significant relationship between compositional variation and geographical distances. Overall, our work shows the complementary nature of both approaches and highlights the importance of DNA metabarcoding to address empirical research questions of community ecology in freshwaters, especially once the reference databases include most genotypes of occurring taxa and bioinformatics biases are overcome.


Assuntos
Diatomáceas , DNA , Código de Barras de DNA Taxonômico , Diatomáceas/genética , Ecossistema , Água Doce
11.
Sci Total Environ ; 723: 138021, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213415

RESUMO

Documenting the patterns of biological diversity on Earth has always been a central challenge in macroecology and biogeography. However, for the diverse group of freshwater plants, such research program is still in its infancy. Here, we examined global variation in taxonomic, functional and phylogenetic beta diversity patterns of lake macrophytes using regional data from six continents. A data set of ca. 480 lake macrophyte community observations, together with climatic, geographical and environmental variables, was compiled across 16 regions worldwide. We (a) built the very first phylogeny comprising most freshwater plant lineages; (b) exploited a wide array of functional traits that are important to macrophyte autoecology or that relate to lake ecosystem functioning; (c) assessed if different large-scale beta diversity patterns show a clear latitudinal gradient from the equator to the poles using null models; and (d) employed evolutionary and regression models to first identify the degree to which the studied functional traits show a phylogenetic signal, and then to estimate community-environment relationships at multiple spatial scales. Our results supported the notion that ecological niches evolved independently of phylogeny in macrophyte lineages worldwide. We also showed that taxonomic and phylogenetic beta diversity followed the typical global trend with higher diversity in the tropics. In addition, we were able to confirm that species, multi-trait and lineage compositions were first and foremost structured by climatic conditions at relatively broad spatial scales. Perhaps more importantly, we showed that large-scale processes along latitudinal and elevational gradients have left a strong footprint in the current diversity patterns and community-environment relationships in lake macrophytes. Overall, our results stress the need for an integrative approach to macroecology, biogeography and conservation biology, combining multiple diversity facets at different spatial scales.


Assuntos
Ecossistema , Lagos , Biodiversidade , Filogenia , Plantas
12.
Sci Total Environ ; 707: 135887, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31862432

RESUMO

Disentangling the relative role of species sorting and dispersal limitation in biological communities has become one of the main issues for community ecologists and biogeographers. In this study, we analysed a data set of epiphytic diatoms comprising 34 lakes from six European countries. This data set covers a relatively large latitudinal gradient to elucidate which processes are affecting the distribution of diatom communities on a broad spatial extent. Our results show strong environmental effects on the composition of the diatom communities, while the spatial factor effects were weak, emphasising that compositional variation was mainly due to species turnover. Our data support information from the literature that local abiotic factors are the main predictors controlling the compositional variation of diatom assemblages in European shallow lakes. More specifically, changes in species composition were driven mainly by nutrient content in Northern Europe, whereas lakes located in Southern Europe were more affected by conductivity and lake depth. Our results solve pending questions in the spatial ecology of diatoms by proving that species turnover is stronger than nestedness at any spatial scale, and give support to the use of epiphytic diatoms as biological indicators for shallow lakes.


Assuntos
Diatomáceas , Lagos , Clima , Europa (Continente) , Geografia
13.
Sci Rep ; 9(1): 18097, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792324

RESUMO

The degree to which dispersal limitation interacts with environmental filtering has intrigued metacommunity ecologists and molecular biogeographers since the beginning of both research disciplines. Since genetic methods are superior to coarse proxies of dispersal, understanding how environmental and geographic factors influence population genetic structure is becoming a fundamental issue for population genetics and also one of the most challenging avenues for metacommunity ecology. In this study of the aquatic macrophyte Myriophyllum alterniflorum DC., we explored the spatial genetic variation of eleven populations from the Iberian Plateau by means of microsatellite loci, and examined if the results obtained through genetic methods match modern perspectives of metacommunity theory. To do this, we applied a combination of robust statistical routines including network analysis, causal modelling and multiple matrix regression with randomization. Our findings revealed that macrophyte populations clustered into genetic groups that mirrored their geographic distributions. Importantly, we found a significant correlation between genetic variation and geographic distance at the regional scale. By using effective (genetic) dispersal estimates, our results are broadly in line with recent findings from metacommunity theory and re-emphasize the need to go beyond the historically predominant paradigm of understanding environmental heterogeneity as the main force driving macrophyte diversity patterns.


Assuntos
Saxifragaceae/genética , DNA de Plantas/genética , Ecossistema , Variação Genética , Genética Populacional , Geografia , Repetições de Microssatélites
14.
Sci Total Environ ; 693: 133616, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377370

RESUMO

Metacommunity ecology has broadened considerably with the recognition that measuring beta diversity beyond the purely taxonomic viewpoint may improve our understanding of the dispersal- and niche-based mechanisms across biological communities. In that perspective, we applied a novel multidimensional approach including taxonomic, functional and phylogenetic data to enhance our basic understanding of macrophyte metacommunity dynamics. For each beta diversity metric, we calculated the mean overall value and tested whether the mean value was different from that expected by chance using null models. We also employed evolutionary and spatially constrained models to first identify the degree to which the studied functional traits showed a phylogenetic signal, and then to estimate the relative importance of spatial and environmental effects on metacommunity structure. We first found that most individual ponds were inhabited by species that were merely random draws from the taxonomic and phylogenetic species pool available in the study region. Contrary to our expectations, not all measured traits were conserved along the phylogeny. We also showed that trait and phylogenetic dimensions strongly increased the amount of variation in beta diversity that can be explained by degree of environmental filtering and dispersal limitation. This suggests that accounting for functional traits and phylogeny in metacommunity ecology helps to explain idiosyncratic patterns of variation in macrophyte species distribution. Importantly, phylogenetic and functional analyses identified the influence of underlying mechanisms that would otherwise be missed in an analysis of taxonomic turnover. Together, these results let us conclude that macrophyte species have labile functional traits adapted to dispersal-based processes and some evolutionary trade-offs that drive community assembly via species sorting. Overall, our exploration of different facets of beta diversity showed how functional and phylogenetic information may be used with species-level data to test community assembly hypotheses that are more ecologically meaningful than assessments of environmental patterns based on the purely taxonomic viewpoint.


Assuntos
Biodiversidade , Ecologia , Filogenia , Plantas , Classificação , Clima , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA