Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Med Chem ; 67(8): 6410-6424, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592014

RESUMO

We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.


Assuntos
Antineoplásicos , Compostos Organoplatínicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química , Ligantes , Camundongos , Linhagem Celular Tumoral , Silanos/química , Silanos/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29
2.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328032

RESUMO

Phenotypic diversity of cancer cells within tumors generated through bi-directional interactions with the tumor microenvironment has emerged as a major driver of disease progression and therapy resistance. Nutrient availability plays a critical role in determining phenotype, but whether specific nutrients elicit different responses on distinct phenotypes is poorly understood. Here we show, using melanoma as a model, that only MITF Low undifferentiated cells, but not MITF High cells, are competent to drive lipolysis in human adipocytes. In contrast to MITF High melanomas, adipocyte-derived free fatty acids are taken up by undifferentiated MITF Low cells via a fatty acid transporter (FATP)-independent mechanism. Importantly, oleic acid (OA), a monounsaturated long chain fatty acid abundant in adipose tissue and lymph, reprograms MITF Low undifferentiated melanoma cells to a highly invasive state by ligand-independent activation of AXL, a receptor tyrosine kinase associated with therapy resistance in a wide range of cancers. AXL activation by OA then drives SRC-dependent formation and nuclear translocation of a ß-catenin-CAV1 complex. The results highlight how a specific nutritional input drives phenotype-specific activation of a pro-metastasis program with implications for FATP-targeted therapies.

3.
Elife ; 122023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530744

RESUMO

Posttranslational modifications of epigenetic modifiers provide a flexible and timely mechanism for rapid adaptations to the dynamic environment of cancer cells. SIRT1 is an NAD+-dependent epigenetic modifier whose activity is classically associated with healthy aging and longevity, but its function in cancer is not well understood. Here, we reveal that 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3, calcitriol), the active metabolite of vitamin D (VD), promotes SIRT1 activation through auto-deacetylation in human colon carcinoma cells, and identify lysine 610 as an essential driver of SIRT1 activity. Remarkably, our data show that the post-translational control of SIRT1 activity mediates the antiproliferative action of 1,25(OH)2D3. This effect is reproduced by the SIRT1 activator SRT1720, suggesting that SIRT1 activators may offer new therapeutic possibilities for colon cancer patients who are VD deficient or unresponsive. Moreover, this might be extrapolated to inflammation and other VD deficiency-associated and highly prevalent diseases in which SIRT1 plays a prominent role.


Assuntos
Neoplasias do Colo , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/metabolismo , Sirtuína 1/metabolismo , Calcitriol , Vitaminas
4.
Diabetes ; 71(3): 497-510, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35040477

RESUMO

Colorectal cancer (CRC) and diabetes are two of the most prevalent chronic diseases worldwide with dysregulated receptor tyrosine kinase signaling and strong co-occurrence correlation. Plasma autoantibodies represent a promising early diagnostic marker for both diseases before symptoms appear. In this study, we explore the value of autoantibodies against receptor-type tyrosine-protein phosphatase-like N (PTPRN; full-length or selected domains) as diagnostic markers using a cohort of individuals with type 2 diabetes (T2D), CRC, or both diseases or healthy individuals. We show that PTPRN autoantibody levels in plasma discriminated between patients with T2D with and without CRC. Consistently, high PTPRN expression correlated with decreased survival of patients with CRC. Mechanistically, PTPRN depletion significantly reduced invasiveness of CRC cells in vitro and liver homing and metastasis in vivo by means of a dysregulation of the epithelial-mesenchymal transition and a decrease of the insulin receptor signaling pathway. Therefore, PTPRN autoantibodies may represent a particularly helpful marker for the stratification of patients with T2D at high risk of developing CRC. Consistent with the critical role played by tyrosine kinases in diabetes and tumor biology, we provide evidence that tyrosine phosphatases such as PTPRN may hold potential as therapeutic targets in patients with CRC.


Assuntos
Autoanticorpos/sangue , Neoplasias Colorretais/imunologia , Diabetes Mellitus Tipo 2/imunologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/fisiologia , Adulto , Animais , Biomarcadores/sangue , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Fatores de Risco
5.
Endocr Relat Cancer ; 28(6): R173-R190, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33852432

RESUMO

Obesity is the strongest known risk factor to develop type 2 diabetes (T2D) and both share a state of chronic, diffuse and low-grade inflammation, impaired immune responses and alterations in the composition and function of the microbiome. Notably, these hallmarks are shared with colorectal cancer (CRC), which is epidemiologically associated to obesity and T2D. Gut barrier damages in T2D destabilize the microbiome that metabolizes the diet and modulates the host immune response triggering inflammatory and proliferative pathways. In this review, we discuss the pathways altered by defects in the immune response and microbiota that may link T2D to CRC development. Stressed adipocytes, metabolic incongruity in blood and gut barrier failure with dysbiosis cooperate to establish imbalances between immune innate and adaptive cells and cytokines such as interleukin 6 (IL6) or TNFA that define low-grade diffuse inflammation in T2D. Inflammation drives tissue repair through proliferation and migration (critical mechanisms for tumourigenesis) and under physiological conditions feeds anti-inflammatory cytokine production to resolve the process. The disproportion in pro- vs anti-inflammatory cells and cytokines imposed by T2D will impact the tumour micro- and macro-environment, favouring tumour proliferation, angiogenesis and decreased immune responses. Complex bidirectional relationships between the metabolic environment of T2D, gut microbiota, and immune dysfunctions may favour tumour cell demands and will define the outcome. Animal models developed to study the relationships between T2D and CRC in the context of microbiota and immune system are discussed.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Microbiota , Animais , Citocinas , Humanos , Inflamação , Obesidade
6.
Endocr Relat Cancer ; 28(6): R191-R206, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33910163

RESUMO

The existence of molecular links that facilitate colorectal cancer (CRC) development in the population with type 2 diabetes (T2D) is supported by substantial epidemiological evidence. This review summarizes how the systemic, metabolic and hormonal imbalances from T2D alter CRC cell metabolism, signalling and gene expression as well as their reciprocal meshing, with an overview of CRC molecular subtypes and animal models to study the diabetes-CRC cancer links. Metabolic and growth factor checkpoints ensure a physiological cell proliferation rate compatible with limited nutrient supply. Hyperinsulinaemia and hyperleptinaemia in prediabetes and excess circulating glucose and lipids in T2D overcome formidable barriers for tumour development. Increased nutrient availability favours metabolic reprogramming, alters signalling and generates mutations and epigenetic modifications through increased reactive oxygen species and oncometabolites. The reciprocal control between metabolism and hormone signalling is lost in diabetes. Excess adipose tissue at the origin of T2D unbalances adipokine (leptin/adiponectin) secretion ratios and function and disrupts the insulin/IGF axes. Leptin/adiponectin imbalances in T2D are believed to promote proliferation and invasion of CRC cancer cells and contribute to inflammation, an important component of CRC tumourigenesis. Disruption of the insulin/IGF axes in T2D targets systemic and CRC cell metabolic reprogramming, survival and proliferation. Future research to clarify the molecular diabetes-CRC links will help to prevent CRC and reduce its incidence in the diabetic population and must guide therapeutic decisions.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Adiponectina , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulina , Leptina
7.
PLoS Biol ; 18(6): e3000732, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603375

RESUMO

Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type-specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply-demand imbalances, critical for diabetes and cancer. Unexpectedly, we show here that, in gastrointestinal cancer cells, glucose activates AMPK to selectively induce EP300, but not CREB-binding protein (CBP). Consequently, EP300 is redirected away from nuclear receptors that promote differentiation towards ß-catenin, a driver of proliferation and colorectal tumorigenesis. Importantly, blocking glycogen synthesis permits reactive oxygen species (ROS) accumulation and AMPK activation in response to glucose in previously nonresponsive cells. Notably, glycogen content and activity of the ROS/AMPK/EP300/ß-catenin axis are opposite in healthy versus tumor sections. Glycogen content reduction from healthy to tumor tissue may explain AMPK switching from tumor suppressor to activator during tumor evolution.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Colorretais/metabolismo , Proteína p300 Associada a E1A/metabolismo , Glucose/farmacologia , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Ativação Enzimática/efeitos dos fármacos , Glicogênio/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo
8.
Endocrinol Diabetes Nutr ; 64(2): 109-117, 2017 02.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28440775

RESUMO

The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies.


Assuntos
Diabetes Mellitus/epidemiologia , Neoplasias/etiologia , Obesidade/epidemiologia , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Glicemia , Causalidade , Transformação Celular Neoplásica , Comorbidade , Suscetibilidade a Doenças , Metabolismo Energético , Hormônios/fisiologia , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Hospedeiro Imunocomprometido , Inflamação , Modelos Biológicos , Risco
9.
Br J Cancer ; 114(7): 716-22, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26908326

RESUMO

Increasing evidence suggests a complex relationship between obesity, diabetes and cancer. Here we review the evidence for the association between obesity and diabetes and a wide range of cancer types. In many cases the evidence for a positive association is strong, but for other cancer types a more complex picture emerges with some site-specific cancers associated with obesity but not to diabetes, and some associated with type I but not type II diabetes. The evidence therefore suggests the existence of cumulative common and differential mechanisms influencing the relationship between these diseases. Importantly, we highlight the influence of antidiabetics on cancer and antineoplastic agents on diabetes and in particular that antineoplastic targeting of insulin/IGF-1 signalling induces hyperglycaemia that often evolves to overt diabetes. Overall, a coincidence of diabetes and cancer worsens outcome and increases mortality. Future epidemiology should consider dose and time of exposure to both disease and treatment, and should classify cancers by their molecular signatures. Well-controlled studies on the development of diabetes upon cancer treatment are necessary and should identify the underlying mechanisms responsible for these reciprocal interactions. Given the global epidemic of diabetes, preventing both cancer occurrence in diabetics and the onset of diabetes in cancer patients will translate into a substantial socioeconomic benefit.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Hipoglicemiantes/farmacologia , Neoplasias/epidemiologia , Obesidade/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Humanos , Neoplasias/etiologia
10.
Adv Exp Med Biol ; 846: 163-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25472538

RESUMO

Prolactin (PRL) is a polypeptide hormone/cytokine mainly synthesized by the lactotrophic cells of the adenohypophysis. In addition to the best-known role in mammary gland development and the functional differentiation of its epithelium, PRL is involved in regulation of multiple physiological processes in higher organisms contributing to their homeostasis. PRL has been also associated with pathology, including breast cancer. Therefore, it is relevant to determine the molecular mechanisms by which PRL controls cellular functions. Here, we analyze the role of Src family kinases (SFKs) in the intracellular signaling pathways controlled by PRL in several model systems. The data show that SFKs are essential components in transmitting signals upon PRL receptor stimulation, as they control activation of Jak2/Stat5 and other routes that regulate PRL cellular responses.


Assuntos
Prolactina/metabolismo , Quinases da Família src/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Humanos , Janus Quinase 2/metabolismo , Janus Quinases/fisiologia , Prolactina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/fisiologia , Receptores da Prolactina/fisiologia , Transdução de Sinais
11.
Biochim Biophys Acta ; 1839(11): 1141-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25091498

RESUMO

Minutes after ingestion of fat or carbohydrates, vesicles stored in enteroendocrine cells release their content of incretin peptide hormones that, together with absorbed glucose, enhance insulin secretion by beta-pancreatic cells. Freshly-made incretins must therefore be packed into new vesicles in anticipation of the next meal with cells adjusting new incretin production to be proportional to the level of previous insulin release and absorbed blood glucose. Here we show that insulin stimulates the expression of the major human incretin, glucose-dependent insulinotropic peptide (GIP) in enteroendocrine cells but requires glucose to do it. Akt-dependent release of FoxO1 and glucose-dependent binding of LEF1/ß-catenin mediate induction of Gip expression while insulin-induced phosphorylation of ß-catenin does not alter its localization or transcriptional activity in enteroendocrine cells. Our results reveal a glucose-regulated feedback loop at the entero-insular axis, where glucose levels determine basal and insulin-induced Gip expression; GIP stimulation of insulin release, physiologically ensures a fine control of glucose homeostasis. How enteroendocrine cells adjust incretin production to replace incretin stores for future use is a key issue because GIP malfunction is linked to all forms of diabetes.


Assuntos
Fatores de Transcrição Forkhead/genética , Polipeptídeo Inibidor Gástrico/genética , Glucose/farmacologia , Insulina/farmacologia , Fator 1 de Ligação ao Facilitador Linfoide/genética , beta Catenina/genética , Células Cultivadas , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , beta Catenina/metabolismo
12.
J Mol Endocrinol ; 52(1): R51-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24049067

RESUMO

Extensive epidemiological studies suggest that the diabetic population is at higher risk of site-specific cancers. The diabetes-cancer link has been hypothesized to rely on various hormonal (insulin, IGF1, adipokines), immunological (inflammation), or metabolic (hyperglycemia) characteristics of the disease and even on certain treatments. Inflammation may have an important but incompletely understood role. As a growth factor, insulin directly, or indirectly through IGF1, has been considered the major link between diabetes and cancer, while high glucose has been considered as a subordinate cause. Here we discuss the evidence that supports a role for insulin/IGF1 in general in cancer, and the mechanism by which hyperglycemia may enhance the appearance, growth and survival of diabetes-associated cancers. High glucose triggers several direct and indirect mechanisms that cooperate to promote cancer cell proliferation, migration, invasion and immunological escape. In particular, high glucose enhancement of WNT/ß-catenin signaling in cancer cells promotes proliferation, survival and senescence bypass, and represents a previously unrecognized direct mechanism linking diabetes-associated hyperglycemia to cancer. Increased glucose uptake is a hallmark of tumor cells and may ensure enhanced WNT signaling for continuous proliferation. Mechanistically, high glucose unbalances acetylation through increased p300 acetyl transferase and decreased sirtuin 1 deacetylase activity, leading to ß-catenin acetylation at lysine K354, a requirement for nuclear accumulation and transcriptional activation of WNT-target genes. The impact of high glucose on ß-catenin illustrates the remodeling of cancer-associated signaling pathways by metabolites. Metabolic remodeling of cancer-associated signaling will receive much research attention in the coming years. Future epidemiological studies may be guided and complemented by the identification of these metabolic interplays. Together, these studies should lead to the development of new preventive strategies for diabetes-associated cancers.


Assuntos
Complicações do Diabetes/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Acetilação , Animais , Glicemia , Complicações do Diabetes/epidemiologia , Glucose/metabolismo , Humanos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiperinsulinismo/complicações , Hiperinsulinismo/metabolismo , Neoplasias/epidemiologia , Risco , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
13.
Mol Cell ; 49(3): 474-86, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23273980

RESUMO

Nuclear accumulation of ß-catenin, a widely recognized marker of poor cancer prognosis, drives cancer cell proliferation and senescence bypass and regulates incretins, critical regulators of fat and glucose metabolism. Diabetes, characterized by elevated blood glucose levels, is associated with increased cancer risk, partly because of increased insulin growth factor 1 signaling, but whether elevated glucose directly impacts cancer-associated signal-transduction pathways is unknown. Here, we show that high glucose is essential for nuclear localization of ß-catenin in response to Wnt signaling. Glucose-dependent ß-catenin nuclear retention requires lysine 354 and is mediated by alteration of the balance between p300 and sirtuins that trigger ß-catenin acetylation. Consequently ß-catenin accumulates in the nucleus and activates target promoters under combined glucose and Wnt stimulation, but not with either stimulus alone. Our results reveal a mechanism by which high glucose enhances signaling through the cancer-associated Wnt/ß-catenin pathway and may explain the increased frequency of cancer associated with obesity and diabetes.


Assuntos
Glucose/farmacologia , Neoplasias/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Proteína p300 Associada a E1A/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Humanos , Cloreto de Lítio/farmacologia , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Sirtuínas/metabolismo , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Proteína Wnt3A/farmacologia
14.
Cell Signal ; 22(3): 415-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19892015

RESUMO

The cytokine prolactin (PRL) plays important roles in the proliferation and differentiation of the mammary gland and it has been implicated in tumorigenesis. The prolactin receptor (PRLR) is devoid of catalytic activity and its mitogenic response is controlled by cytoplasmic tyrosine kinases of the Src (SFK) and Jak families. How PRLR uses these kinases for signaling is not well understood. Previous studies indicated that PRLR-induced Jak2 activation does not require SFK catalytic activity in favor of separate signaling operating on this cellular response. Here we show that, nevertheless, PRLR requires Src-SH2 and -SH3 domains for Jak2 signaling. In W53 lymphoid cells, conditional expression of two c-Src non-catalytic mutants, either SrcK295M/Y527F or SrcK, whose SH3 and SH2 domains are exposed, controls Jak2/Stat5 activation by recruiting Jak2, avoiding its activation by endogenous active SFK. In contrast, the kinase inactive SrcK295M mutant, with inaccessible SH3 and SH2 domains, does not. Furthermore, all three mutants attenuate PRLR-induced Akt and p70S6K activation. Accordingly, PRLR-induced Jak2/Stat5 signaling is inhibited in MCF7 breast cancer cells by Src depletion, expression of SrcK295M/Y527F or active Src harboring an inactive SH2 (SrcR175L) or SH3 domain (SrcW118A). Finally, Jak2/Stat5 pathway is also reduced in Src-/- mice mammary glands. We thus conclude that, in addition to Akt and p70S6K, SFK regulate PRLR-induced Jak2 signaling through a kinase-independent mechanism.


Assuntos
Janus Quinase 2/metabolismo , Prolactina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Prolactina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Domínios de Homologia de src , Quinases da Família src
15.
Arch. méd. Camaguey ; 12(5)2008. graf, tab
Artigo em Espanhol | LILACS | ID: lil-532411

RESUMO

Fundamento: La anestesia en cirugía de cataratas ha evolucionado simultáneamente a la técnica quirúrgica. La cirugía de pequeña incisión ha popularizado el uso de la anestesia tópica, la cual permite llevar a cabo la cirugía con una excelente tolerancia por parte del paciente. Objetivo: Analizar los resultados de la cirugía de cataratas con crioanestesia mediante la técnica de Blumenthal en pacientes aquejados de catarata senil. Método: Se realizó un estudio explicativo sobre los resultados de la cirugía de cataratas con crioanestesia por la técnica de Blumenthal en el Servicio de Oftalmología del Hospital Docente Clínico Quirúrgico Manuel Ascunce Domenech desde diciembre de 2005 a agosto de 2006. El universo estuvo constituido por todos los pacientes con este diagnóstico con criterio quirúrgico a los que se les aplicó un formulario creado al efecto basado en la revisión bibliográfica y el criterio de expertos. Se estudiaron las variables sexo, estadio de la catarata, tiempo de exposición a la anestesia y grado de satisfacción del paciente. Resultados: La mayor cantidad de pacientes estuvo comprendida en el grupo de 70 a 79 años de edad, hubo menor efectividad con la técnica anestésica en los grupos de edades más jóvenes, no existió diferencia con respecto al sexo, aunque el masculino mostró menos efectividad en la técnica anestésica con una proporción de 2:1. Conclusiones: La catarata hipermadura disminuyó la validez de la técnica anestésica, la prolongación del tiempo quirúrgico con relación al estadio de la catarata redujo la eficacia de la técnica anestésica y tres de cada cinco pacientes evaluaron la técnica como excelente o buena.


Background: The anesthesia in cataracts surgery has simultaneously evolved to the surgical technique. The surgery of small incision has popularized the use of topical anesthesia, which allows carrying out the surgery with excellent tolerance by the patient. Objective: To analyze the results of the cataracts surgery with cryoanesthesia by means of Blumenthal technique in patients suffering senile cataract. Method: An explicative study about the results of the cataracts surgery with cryoanesthesia by means of Blumenthal technique in the Ophthalmology service at Manuel Ascunce Domenech Surgical Clinic Educational Hospital from December 2005 to August 2006. The universe was constituted by all the patients with diagnosis of surgical criterion, to which was applied a formulary created to the effect based on the bibliographic review and experts criterion. Sexes, cataract stage, exposure time to anesthesia and satisfaction grade of the patient, were the variables studied. Results: The higher quantity of patients was comprised in the group of 70 to 79 years, there was less effectivity with the anesthetic technique in the younger age groups, there was no difference regarding to sex, though the masculine showed less effectivity in the anesthetic technique with a proportion of 2:1. Conclusions: The hypermature cataract diminished the validity of the anesthetic technique, prolongation of surgical time related to the cataract stage reduced the anesthetic technique effectiveness and three out of five patients assessed the technique as excellent or good.


Assuntos
Humanos , Idoso , Crioanestesia/métodos , Extração de Catarata/métodos
16.
J Biol Chem ; 281(30): 20851-20864, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16728403

RESUMO

To study the role of c-Src in breast cancer tumorigenesis, we generated a cell line derived from MCF7 carrying an inducible dominant negative c-Src (c-SrcDN: K295M/Y527F) under tetracycline control (Tet-On system). c-SrcDN expression caused phenotypic changes, relocation of c-Src, Fak, and paxillin, and loss of correct actin fiber assembly. These alterations were coupled to increased Fak-Tyr(397) autophosphorylation and to inhibition of Fak-Tyr(925), p130(CAS), and paxillin phosphorylation. An increased association of total Src with Fak and a decreased interaction of p130(CAS) and p85-PI3K with Fak were also observed. SrcDN inhibited cell attachment, spreading, and migration. Serum and EGF-induced stimulation of cell proliferation and Akt phosphorylation were also significantly reduced by SrcDN, whereas p27(Kip1) expression was increased. Consistently, silencing c-Src expression by siRNA in MCF7 cells significantly reduced cell migration, attachment, spreading and proliferation. Inoculation of MCF7 cells carrying inducible SrcDN to nude mice generated tumors. However, doxycycline administration to mice significantly reduced tumorigenesis, and when doxycycline treatment was installed after tumor development, a significant tumor regression was observed. In both situations, inhibition of tumorigenesis was associated with decreased Ki67 staining and increased apoptosis in tumors. These data undoubtedly demonstrate the relevance of the Src/Fak complex in breast cancer tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Tirosina Quinases/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proteína Substrato Associada a Crk/metabolismo , Feminino , Quinase 1 de Adesão Focal/metabolismo , Genes Dominantes , Humanos , Antígeno Ki-67/biossíntese , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Quinases da Família src
17.
Carcinogenesis ; 27(8): 1699-712, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16624827

RESUMO

Lauryl gallate is an antioxidant food additive showing low toxicity to normal cells. Here, its antiproliferative effect has been studied on three human breast cancer cell lines: estrogen-dependent, wild-type p53, MCF7; estrogen-independent, non-functional p53, MDA-MB-231 and MCF7 ADR, which overexpresses P-glycoprotein (P-gp) and displays a multidrug-resistant phenotype. Lauryl gallate inhibited proliferation and induced cell cycle alterations in all three cell lines without altering P-gp functionality in the drug-resistant cells. A stable arrest in G(1) phase was observed in MCF7, while a slow-down of cell cycle progression was induced in the other two cell lines. Lauryl gallate increased p53 expression only in MCF7, and upregulated p21(Cip1) and reduced cyclin D1 levels in all three cell lines. The induction of apoptosis, demonstrated by annexin V-FITC labeling, PARP cleavage and mitochondrial membrane depolarization and morphological alterations, were clearly detected in MCF7 ADR and MDA-MB-231 and to a minor extent in MCF7. Overexpression of Bcl-2 in MCF7 ADR cells demonstrated its protective role against morphological alterations and apoptosis. Lauryl gallate induction of p21(Cip1) and apoptosis observed in all three cell lines was regulated by Erk1/2 activation. These findings suggest a potential use of lauryl gallate against tumors harboring p53 mutations and drug-resistant phenotypes.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama , Proliferação de Células/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fase G1 , Ácido Gálico/farmacologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
18.
Oncogene ; 23(44): 7378-90, 2004 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-15286700

RESUMO

Stimulation of resting W53 cells (lymphoid murine cells expressing prolactin (PRL) receptor) by PRL induced expression of growth-related immediate-early genes (IEG), and proliferation through activation of the Src kinases. Since IEG are essential for cell cycle progression, we have studied how PRL controls expression of c-Myc mRNA and c-Fos. Stimulation of W53 cell proliferation by PRL required activation of MAPK, as the Mek1/2 inhibitor PD184352 eliminated Erk1/2 stimulation, cell proliferation, and expression of c-Fos mRNA. In contrast, PD184352 did not alter PRL activation of c-Myc mRNA expression or stimulation of p70S6K, Akt, and the Jak2/Stat5 pathway. Activation of the PI3K by PRL was necessary for the expression of c-MycmRNA and W53 cell proliferation, as the PI3K inhibitor LY294002 abolished them. However, it did not modify PRL stimulation of c-Fos mRNA expression or activation of Erk1/2 and Stat5. Furthermore, rapamycin, an inhibitor of mTOR and consequently of p70S6K, did not alter PRL stimulation of c-Myc and c-Fos mRNA expression and it had a very minor inhibitory effect on PRL stimulation of W53 cell proliferation. In addition, rapamycin did not affect PRL stimulation of Akt or Stat5. However, it reinforced PRL activation of Erk1/2. Overexpression of a constitutively activated Akt (myristoylated Akt) in W53 cells overcame the inhibitory effect of LY294002 on c-Myc expression, as well as cell death upon PRL deprivation. Consistently, inducible expression of Akt-CAAX Box in W53 cells caused inhibition of c-Myc expression. PRL stimulation of W53 cells resulted in Akt translocation to the nucleus, phosphorylation of FKHRL1 transcription factor, and its nuclear exclusion. In contrast, induced expression of Akt-CAAX Box caused inhibition of FKHRL1 phosphorylation. Furthermore, transient expression of nonphosphorylatable FKHRL1-A3 mutant impaired PRL-induced activation of the c-Myc promoter. Akt activation also resulted in phosphorylation and inhibition of glycogen synthetase kinase 3 (GSK3), which in turn promoted c-Myc stability. Consistently, treatment of W53 with selective inhibitors of GSK3 such as SB415286 and lithium salts resulted in increased levels of c-Myc. Also, overexpression of c-Myc in W53 cells overcame the decrease in cell proliferation induced by LY294002. These findings defined a PRL-signalling cascade in W53 cells, involving Src kinases/PI3K/Akt/FKHRL1-GSK3, that mediates stimulation of c-Myc expression.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Genes myc/efeitos dos fármacos , Prolactina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Genes Precoces/genética , Genes myc/genética , Genes src/fisiologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética
19.
Mol Endocrinol ; 17(11): 2268-82, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12907754

RESUMO

Prolactin (PRL) stimulates breast cancer cell proliferation; however, the involvement of PRL-activated signaling molecules in cell proliferation is not fully established. Here we studied the role of c-Src on PRL-stimulated proliferation of T47D and MCF7 breast cancer cells. We initially observed that PRL-dependent activation of focal adhesion kinase (Fak), Erk1/2, and cell proliferation was mediated by c-Src in T47D cells, because expression of a dominant-negative form of c-Src (SrcDM, K295A/Y527F) blocked the PRL-dependent effects. The Src inhibitor PP1 abrogated PRL-dependent in vivo activation of Fak, Erk1/2, p70S6K, and Akt and the proliferation of T47D and MCF7 cells; Janus kinase 2 (Jak2) activation was not affected. However, in vitro, Fak and Jak2 kinases were not directly inhibited by PP1, demonstrating the effect of PP1 on c-Src kinase as an upstream activator of Fak. Expression of Fak mutant Y397F abrogated PRL-dependent activation of Fak, Erk1/2, and thymidine incorporation, but had no effect on p70S6K and Akt kinases. MAPK kinase 1/2 (Mek1/2) inhibitor PD184352 blocked PRL-induced stimulation of Erk1/2 and cell proliferation; however, p70S6K and Akt activation were unaffected. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 abolished cell proliferation and activation of p70S6K and Akt; however, PRL-dependent activation of Erk1/2 was not modified. Moreover, we show that both c-Src/PI3K and c-Src/Fak/Erk1/2 pathways are involved in the up-regulation of c-myc and cyclin d1 expression mediated by PRL. The previous findings suggest the existence of two PRL-dependent signaling cascades, initiated by the c-Src-mediated activation of Fak/Erk1/2 and PI3K pathways that, subsequently, control the expression of c-Myc and cyclin D1 and the proliferation of T47D and MCF7 breast cancer cells.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prolactina/farmacologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Ovinos , Transdução de Sinais/efeitos dos fármacos
20.
Biochem Pharmacol ; 65(2): 209-17, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12504796

RESUMO

Metamizol is an analgesic and antipyretic agent that can induce agranulocytosis in certain patients. However, its effects on granulocyte viability and differentiation have been poorly evaluated. Here we analysed the effects of metamizol and its active metabolite, 4-methylaminoantipyrine (MAA), on the viability of HL60 promyelocytes and their dimethyl sulphoxide-induced differentiated granulocytes. Metamizol and MAA at 75 microM (above the peak of plasmatic concentration after 2g intake) did not alter granulocytic differentiation of HL60 cells. Only at concentrations above 100 microM, well over the pharmacological range, metamizol-induced apoptosis in about 30% of the HL60 promyelocytes, while HL60-granulocytic terminally differentiated cells were more resistant to this apoptotic action. When the effects of metamizol were compared with those of acetylsalicylic acid (ASA) and diclofenac on cell viability, at equivalent concentrations used in analgesic and antipyretic therapy (75 microM for metamizol, and ASA and 3 microM for diclofenac) their apoptotic effects were similar. Again, the HL60 promyelocytes were more sensitive to apoptosis than granulocytic differentiated cells, as measured by the percentage of sub-G(1) cells detected by flow cytometry and by determination of caspase activity as a function of poly(ADP-ribose) polymerase cleavage. Furthermore, when human blood-derived granulocytes were treated with metamizol, MAA, and ASA at 75 microM or diclofenac at 3 microM, less than 10% of apoptotic granulocytes were detected, whereas at toxicological/suprapharmacological concentrations (10mM), about 90% of granulocytes were apoptotic. These results demonstrate that metamizol, MAA, ASA, and diclofenac, at pharmacological concentrations, neither affect the granulocytic differentiation process nor induce relevant apoptosis on terminally differentiated granulocytes.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dipirona/farmacologia , Granulócitos/efeitos dos fármacos , Apoptose , Aspirina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Diclofenaco/farmacologia , Dimetil Sulfóxido/farmacologia , Interações Medicamentosas , Granulócitos/patologia , Células HL-60 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA