RESUMO
Robotic rehabilitation has emerged as a promising approach to enhance motor recovery after stroke, but there is limited knowledge about its efficacy in individuals who have experienced severe stroke. The study presented in this paper aims to analyze the effect of robotic therapy on the recovery of patients with severe stroke when combined with conventional rehabilitation therapies, and we want to observe whether there is a relationship between the clinical assessment provided by the therapist and the data recorded by the robotic device. Participants were divided into an experimental group and a control group, both receiving 15 sessions of conventional therapy in three consecutive weeks, but the experimental group underwent three out of five sessions per week with a robotic device. Both groups were evaluated using clinical scales, and in addition the experimental group was evaluated using an assessment game incorporated in the robotic device that provides session data such as the level of assistance needed by each user to complete the activity, or the score obtained in the game. These preliminary results showed that patients who received robot-assisted therapy had better motor function recovery compared to those who only received conventional therapy. In addition, it is also observed that the robot assistance needed by patients in the experimental group decreased as the sessions progressed, suggesting that robot-assisted therapy could be an effective tool for severe stroke patients.
Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Terapia por Exercício , Recuperação de Função Fisiológica , Resultado do Tratamento , Extremidade SuperiorRESUMO
In conventional ultrasonic techniques, the necessary contact between the sensor and the product has constrained the implementation of ultrasound for quality control purposes in the meat industry. The use of novel air-coupled ultrasonic technologies provides multiple advantages linked to contactless inspection. Therefore, this study aims to compare the feasibility of contact (C; 1 MHz) and non-contact (NC; 0.3 MHz) ultrasonic techniques for monitoring the physicochemical modifications undergone by beef steaks during dry salting after different times (0, 1, 4, 8 and 24 hours). Experimental results showed that the ultrasonic velocity increased during salting, which was linked to the reduction in Time-of-Flight ratio (RTOF) and sample shrinkage (velocity C: R2 = 0.99; velocity NC: R2 = 0.93 and RTOF C: R2 = 0.98; RTOF NC: R2 = 0.95). In terms of the compositional changes provoked by salting, the velocity variation (â³V) increased linearly (C: R2 = 0.97; NC: R2 = 0.95) with the salt content. As for textural parameters, hardness (C: R2 = 0.99; NC: R2 = 0.97) and relaxation capacity (C: R2 = 0.96; NC: R2 = 0.94) were well correlated with the â³V through power equations. Experimental results reflected that the performance of the non-contact ultrasonic technique was similar to that of the contact technique as regards the monitoring of the physicochemical changes undergone by beef steaks during dry salting.
Assuntos
Carne Vermelha , Ultrassom , Animais , Bovinos , Carne/análise , Cloreto de Sódio na Dieta , Fatores de TempoRESUMO
Meat processing involves different transformations in the animal muscle after slaughtering, which results in changes in tenderness, aroma and colour, determining the quality of the final meat product. Enzymatic glycolysis, proteolysis and lipolysis play a key role in the conversion of muscle into meat. The accurate control of enzymatic reactions in meat muscle is complicated due to the numerous influential factors, as well as its low reaction rate. Moreover, exogenous enzymes are also used in the meat industry to produce restructured products (transglutaminase), to obtain bioactive peptides (peptides with antioxidant, antihypertensive and gastrointestinal activity) and to promote meat tenderization (papain, bromelain, ficin, zingibain, cucumisin and actinidin). Emerging technologies, such as ultrasound (US), pulsed electric fields (PEF), moderate electric fields (MEF), high-pressure processing (HPP) or supercritical CO2 (SC-CO2), have been used to intensify enzymatic reactions in different food applications. This review aims to provide an overview of the enzymatic reactions taking place during the processing of meat products, how they could be intensified by using emerging technologies and envisage potential applications.
RESUMO
BACKGROUND: The aging of the population and the progressive increase in life expectancy in developed countries is leading to a high incidence of cerebrovascular diseases. Several studies have demonstrated that robot-assisted rehabilitation therapies combined with serious games can improve rehabilitation outcomes. Social interaction in the form of multiplayer games has been highlighted as a potential element to increase patient's motivation and exercise intensity, which professionals have described as one of the determining factors in maximizing rehabilitation outcomes. Despite this, it has not been widely studied. Physiological measures have been proven as an objective tool to evaluate patients' experience in robot-assisted rehabilitation environments. However, they have not been used to evaluate patients' experience in multiplayer robot-assisted rehabilitation therapies. The main objective of this study is to analyze whether the interpersonal interaction inherent in a competitive game mode affects the patients' physiological responses in robot-assisted rehabilitation environments. METHODS: A total of 14 patients participated in this study. The results of a competitive game mode were compared with a single-player game mode with different difficulty levels. Exercise intensity and performance were measured through parameters extracted from the game and the information provided by the robotic rehabilitation platforms. The physiological response of patients in each game mode was measured by the heart rate (HR) and the galvanic skin response (GSR). Patients were asked to fill out the IMI and the overall experience questionnaire. RESULTS: The exercise intensity results show that high-difficulty single-player game mode is similar in terms of intensity level to a competitive game mode, based on velocity values, reaction time and questionnaire results. However, the results of the physiological responses of the patients measured by GSR and HR are lower in the case of the competitive mode compared to the high-difficulty single-player game mode, obtaining results similar to those obtained in the low-difficulty single-player game mode. CONCLUSIONS: Patients find the competitive game mode the most fun, which is also the mode they report experiencing the most effort and stress level. However, this subjective evaluation is not in line with the results of physiological responses. This study concludes that interpersonal interaction inherent to a competitive game mode influences patients' physiological responses. This could mean that social interaction is an important factor to consider when interpreting the results obtained from physiological measurements.
Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Terapia por Exercício/métodos , Relações Interpessoais , Robótica/métodosRESUMO
Moisture adsorption is considered a critical factor during production and shelf-life of puffed corn cakes (PCC). This study aims to develop and validate an instrumental method and a mathematical model for the characterization of the textural modifications caused by the moisture adsorption in PCC. For that purpose, PCC were stored at different relative humidities to achieve a wide range of water activities (from 0.1 to 0.8 at 22 ± 1 °C). A flexion-compression test was successfully validated in order to characterize the average textural properties of a PCC batch. A mathematical model considering consecutive elastic and plastic zones satisfactorily fitted (average VAR 99.65% and MRE 3.29%) the average stress-strain profiles of PCC and reported useful textural parameters, such as the deformability modulus (E), critical strain (εc), and n curvature parameter. The structural modifications caused by moisture adsorption led to the reduction in E and n and the increase in εc. Even minor changes on the PCC moisture content involve remarkable modifications of the textural properties, which has to be considered for industry and retail distribution.
RESUMO
Porcine liver has a high nutritional value and is rich in proteins, minerals, and vitamins, making it an interesting co-product to alleviate the growing global demand for protein. The objective of this study was to analyze how the drying and defatting processes of porcine liver affect the physicochemical and techno-functional properties of its proteins. Two drying temperatures (40 and 70 °C) were studied, and dried samples were defatted using organic solvents. The drying process turned out to be an effective method for the stabilization of the protein fraction; however, when the drying temperature was high (70 °C), greater protein degradation was found compared to drying at a moderate temperature (40 °C). Regarding the defatting stage, it contributed to an improvement in certain techno-functional properties of the liver proteins, such as the foaming capacity (the average of the dried and defatted samples was 397% higher than the dried samples), with the degree of foaming stability in the liver dried at 40 °C and defatted being the highest (13.76 min). Moreover, the emulsifying capacity of the different treatments was not found to vary significantly (p > 0.05). Therefore, the conditions of the drying and defatting processes conducted prior to the extraction of liver proteins must be properly adjusted to maximize the stability, quality, and techno-functional properties of the proteins.
Assuntos
Dessecação , Fígado , Animais , Valor Nutritivo , Solventes/química , Suínos , TemperaturaRESUMO
Current demand of consumers for healthy and sustainable food products has led the industry to search for different sources of plant protein isolates and concentrates. Legumes represent an excellent nonanimal protein source with high-protein content. Legume species are distributed in a wide range of ecological conditions, including regions with drought conditions, making them a sustainable crop in a context of global warming. However, their use as human food is limited by the presence of antinutritional factors, such as protease inhibitors, lectins, phytates, and alkaloids, which have adverse nutritional effects. Antitechnological factors, such as fiber, tannins, and lipids, can affect the purity and protein extraction yield. Although most are removed or reduced during alkaline solubilization and isoelectric precipitation processes, some remain in the resulting protein isolates. Selection of appropriate legume genotypes and different emerging and sustainable facilitating technologies, such as high-power ultrasound, pulsed electric fields, high hydrostatic pressure, microwave, and supercritical fluids, can be applied to increase the removal of unwanted compounds. Some technologies can be used to increase protein yield. The technologies can also modify protein structure to improve digestibility, reduce allergenicity, and tune technological properties. This review summarizes recent findings regarding the use of emerging technologies to obtain high-purity protein isolates and the effects on techno-functional properties and health.
Assuntos
Fabaceae , Fibras na Dieta , Humanos , Proteínas de Plantas , Taninos , VerdurasRESUMO
Interpersonal rehabilitation games, compared to single-player games, enhance motivation and intensity level. Usually, it is complicated to restrict the use of the system to pairs of impaired patients who have a similar skill level. Thus, such games must be dynamically adapted. Difficulty-adaptation algorithms are usually based only on performance parameters. In this way, the patient's condition cannot be considered when adapting the game. Introducing physiological reactions could help to improve decision-making. However, it is difficult to control how social interaction influences physiological reactions, making it difficult to interpret physiological responses. This article aimed to explore the changes in physiological responses due to the social interaction of a competitive game modality. This pilot study involved ten unimpaired participants (five pairs). We defined different therapy sessions: (i) a session without a competitor; (ii) two sessions with a virtual competitor with different difficulty levels; (iii) a competitive game. Results showed a difference in the physiological response in the competitive mode concerning single-player mode only due to the interpersonal game modality. In addition, feedback from participants suggested that it was necessary to keep a certain difficulty level to make the activity more challenging, and therefore be more engaging and rewarding.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Jogos de Vídeo , Terapia por Exercício , Humanos , Motivação , Projetos PilotoRESUMO
For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model. Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C.butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A.niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C.butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A.niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion's stability.
Assuntos
Dióxido de Carbono/farmacologia , Lipídeos/química , Viabilidade Microbiana/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Ondas Ultrassônicas , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/fisiologia , Clostridium butyricum/efeitos dos fármacos , Clostridium butyricum/fisiologia , Emulsões , Esporos Bacterianos/fisiologia , Esporos Fúngicos/fisiologiaRESUMO
The present study aims to evaluate the antibacterial activity and biological properties of two traditional Saharian plants (Cymbopogon schoenanthus and Ziziphus lotus). The plant extracts were obtained by using a different combination of extraction methods (conventional vs. ultrasound-assisted) and solvents (water vs. ethanol:water (50:50, v/v)). The antioxidant profile, anti-inflammatory activity and impact on bacterial growth (foodborne and probiotic bacteria) of the obtained extracts were assessed. The plant species showed the hierarchically more important role in determining the biological properties of the extracts, followed by extraction solvent and extraction conditions. Conventional Z. lotus hydroethanolic extracts showed the highest total phenolic content (20.4 mg GAE/g), while Z. lotus ethanol extracts from ultrasound-assisted process presented the highest content of carotenoids (0.15 mg/g). In addition, ultrasound-assisted Z. lotus hydroethanolic extracts presented the highest in vitro radical scavenging activity, being 7.93 mmol Trolox/g. Multivariate analysis statistics (PCA) showed that both the extraction methodology and the solvent used strongly affected the bacterial growth. Z. lotus mainly decreased the growth rate of S. aureus and L. innocua. Interestingly, the aqueous extracts of this plant as well as those from C. schoenanthus, obtained by conventional extraction, significantly increased the growth rate and the maximal optical density of L. casei. Aqueous extracts of both Z. lotus and C. schoenanthus slightly influenced the growth of Bifidobacterium. Overall, the extracts of these plants showed selective activities with respect to pathogens and probiotic bacteria and may provide an advantage both in terms of antimicrobial and prebiotic activity.
Assuntos
Cymbopogon , Lotus , Ziziphus , Antioxidantes/farmacologia , Staphylococcus aureusRESUMO
Mediterranean herbs, specially thyme and rosemary, are important ingredients in food preparation and more recently have been studied as natural sources of bioactive compounds. This study aimed to study the effect of matrix (thyme vs. rosemary), and extraction protocol (conventional extraction vs. ultrasound assisted extraction) solvent composition (water vs. 50:50 ethanol:water solution) on the extraction of high value compounds (phenolic compounds, flavonoids and carotenoids) and also explore the antioxidant, antimicrobial (Listeria innocua, Staphylococcus aureus, and Salmonella enterica), probiotic (Lactobacillus casei and Bifidobacterium lactis), and anti-inflammatory activities. The phenolic, flavonoid and carotenoid content of extracts was greatly influenced by extraction conditions wherein the ultrasound pre-treatment improved the extraction of carotenoids but induced the opposite effect for polyphenols and flavonoids in both herbs. Only the aqueous extract of thyme obtained from ultrasound pre-treatment was the only extract that inhibited the growth of potentially pathogenic bacteria, stimulated the probiotic bacteria and achieved high anti-inflammatory and antioxidant activity. Moreover, this extract also was rich on phenolic compounds (such as p-coumaric acid 4-O-glucoside, kaempferol 3-O-rutinoside, feruloyl glucose, and 4-vinylguaiacol) and carotenoids. Therefore, ultrasound extraction of bioactive compounds with water as solvent could be explored in food and pharmaceutical applications.
Assuntos
Rosmarinus , Thymus (Planta) , Listeria , Extratos Vegetais/farmacologia , SolventesRESUMO
Mediterranean plants, such as fig and olive leaves, are well-known to exert beneficial effects in humans because of the presence of a wide range of bioactive compounds. However, scarce information regarding the impact of extraction methods, such as ultrasound and types of solvents, on their profile of antioxidant and anti-inflammatory compounds is provided. In addition, no information is available on the effects of extraction methods and solvents on the inhibition of pathogenic bacteria or promoting probiotic growth. In this scenario, this study was aimed to study the effects of ultrasound-assisted extraction (UAE) and solvent on the phenolic profile (Triple TOF-LC-MS/MS), antioxidant and anti-inflammatory compounds of olive and fig leaves. Results showed that UAE extracted more carotenoids compared to conventional extraction, while the conventional extraction impacted on higher flavonoids (olive leaves) and total phenolics (fig leaves). The antioxidant capacity of aqueous extract of fig leaves was three times higher than the extract obtained with ethanol for conventional extraction and four times higher for UAE. In general terms, hydroethanolic extracts presented the highest bacterial growth inhibition, and showed the highest anti-inflammatory activity. In conclusion, these side streams can be used as sources of bioactive compounds for further development of high-added-value products.
Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Ficus/química , Olea/química , Fenóis/química , Fenóis/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Solventes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ondas UltrassônicasRESUMO
The paper presents experimental results concerning the ultrasonically-assisted extraction of bioactive compounds from Erodium glaucophyllum roots. A comparison with conventional methodology is presented, and thereby the phytochemical composition and the antioxidant and anti-inflammatory activities of extracts are evaluated. The phenolic profile of Erodium extracts was analyzed by TOF-LC-MS-MS. The identification of phenolic compounds revealed that the major component was (+)-gallocatechin in the aqueous extracts obtained for the different extraction methodologies. The highest quantity of phenolic compounds and antioxidant capacity was found in the hydroethanolic extract obtained by conventional extraction (29.22-25.50 mg GAE/g DM; 21.174 mM Trolox equivalent). The highest content of carotenoids, varying from 0.035 to 0.114 mg/g dry matter, was reached by ultrasonic-assisted extraction. Furthermore, Erodium extracts showed a potent inhibition of the inflammatory reaction by means of the inhibition of tumor necrosis factor-alpha (TNF-α). The extracts obtained when ultrasound extraction was combined with ethanol:water (50:50, v/v) presented the greatest inhibition (92%).
Assuntos
Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Traqueófitas/química , Ondas Ultrassônicas , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Etanol/química , Fenóis/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Erodium spp. is a genus that can be found in all continents that has been traditionally used in folk medicine to treat many diseases such as hemorrhage, dermatological disorders, indigestion, and inflammatory diseases. Moreover, Erodium leaves have been used for the preparation of salads, omelets, sandwiches, sauces and soups, among other food products. The objective of this review was to show the recent and relevant studies about extraction of bioactive compounds, the phytochemical characterization, the potential biological activities and toxicological evidence reported in both in vitro and in vivo studies from Erodium spp. In addition, the use of Erodium spp. as natural compounds against the development of diseases were also showed. This review highlights the traditional use of Erodium species in several countries as a therapeutic agent to treat several diseases (such as constipation, dermatological disorders, diabetes, indigestion, urinary inflammations, and as carminative agent), the factors influencing the extraction of bioactive compounds (mainly species and solvent composition on phenolic compounds) and phytochemical profile (presence of essential oils and alkaloids), the scientific evidence about its anti-inflammatory, antimicrobial (against both spoilage and pathogenic microorganisms), antiviral and other health-related activities (anti-protozoal and anti-viral activity) as well as the toxicological evidence. Erodium spp. is a relevant source of compounds with antioxidant, antimicrobial, and biological activity, which support its potential exploration in pharmacological and food area. Major efforts are necessary to advance the knowledge about Erodium genus regarding the relation between traditional use and scientific evidence, optimization of extraction conditions, the influence on biological mechanisms at animal and clinical levels, and bioaccessibility and bioavailability of bioactive compounds.
Assuntos
Etnofarmacologia , Geraniaceae , Compostos Fitoquímicos , Anti-Infecciosos , Anti-Inflamatórios , Antioxidantes , Antivirais , Humanos , Medicina Tradicional , Óleos Voláteis , Compostos Fitoquímicos/análise , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/químicaRESUMO
Ultrasound can intensify the heating process used to correct texture defects in dry-cured hams. The effect of ultrasound-assisted heating on the proteome of sliced dry-cured ham was evaluated. Dry-cured hams with high proteolysis index (PIâ¯>â¯36) were sliced, vacuum packed and subjected to conventional (CV) and ultrasound-assisted (US) thermal treatments. Comparative proteome profiling between sample groups was assessed by two-dimensional electrophoresis (2-DE) coupled to tandem mass spectrometry. It was found that protein fragmentation increased markedly after US thermal treatment. Specifically, fragments of the major myofibrillar protein, actin, were abundantly over-represented following US heating. In addition, five unfragmented sarcoplasmic proteins (i.e. fatty acid-binding protein, peroxiredoxin-6, superoxide dismutase, carbonyl reductase and aminoacylase) showed increased abundance in the US sample group. These results suggest candidate biomarkers to monitor proteolysis intensity and proteolysis-independent effects linked to cured ham quality by ultrasound application. SIGNIFICANCE: The present proteome profiling study of treated dry-cured ham demonstrates the impact of ultrasound action on proteins. Moreover, negative organoleptic effects can be appearing with ultrasound treatment due to proteolysis increase. Therefore, the proteolysis monitoring could help to control these effects. In this regards, our results suggest that actin can be a candidate biomarker to monitor proteolysis intensity.
Assuntos
Análise de Alimentos , Manipulação de Alimentos , Proteínas Musculares/análise , Carne de Porco/análise , Proteômica , Ondas UltrassônicasRESUMO
The impact of low temperature treatment and its combination with ultrasound has been evaluated in order to correct texture defects in dry-cured hams. A total of 26 dry-cured hams, classified as high proteolysis index (PI>36%), were used. From these hams, ten slices from each ham sample were cut, vacuum packed and submitted to three different treatments: control (without treatment), conventional thermal treatments (CV) and thermal treatment assisted by power ultrasound (US). The impact of these treatments on instrumental adhesiveness, free amino acid and volatile compounds profile were assessed. Statistical analysis showed that both US and CV treatments, significantly (Pâ¯<â¯.001) decreased the instrumental adhesiveness of dry-cured hams from 85.27â¯g for CO to 40.59 and 38.68â¯g for US and CV groups, respectively. The total free amino acid content was significantly (Pâ¯<â¯.001) affected by both treatments, presenting higher values the samples from the US group (6691.5 vs. 6067.5 vs. 5278.2â¯mg/100â¯g dry matter for US, CV and CO groups, respectively). No significant differences were observed between US and CV treatments. All the individual free amino acids were influenced by ultrasound and temperature treatments, showing the highest content in sliced dry-cured ham submitted to ultrasounds at 50⯰C, except for isoleucine which presented the highest level in samples from CV group. Similarly, significant differences (Pâ¯<â¯.05) were also detected in the total volatile compound content between CO and US groups, with a higher concentration in the CO batch (56,662.84â¯AUâ¯×â¯103/g of dry-cured ham) than in the US treatment (45,848.47â¯AUâ¯×â¯103/g of dry-cured ham), being the values in the CV treatment intermediate (48,497.25â¯AUâ¯×â¯103/g of dry-cured ham). Aldehydes, ethers and esters, carboxylic acids and sulphur compounds were more abundant in the CO group, while CV group showed higher concentrations of ketones, alcohols and nitrogen compounds.
Assuntos
Aminoácidos/análise , Manipulação de Alimentos/métodos , Produtos da Carne , Compostos Orgânicos Voláteis/análise , Adesividade , Animais , Produtos da Carne/análise , Produtos da Carne/efeitos da radiação , Proteólise , Sonicação , Suínos , TemperaturaRESUMO
Power ultrasound is applied in food technology to intensify extraction processes, due to the phenomena ultrasonic energy induces in the medium, enhancing mass transfer. The purpose of this work was the acoustic characterization of four transducers of different geometries and the evaluation of their performance in the ultrasonically assisted supercritical fluid extraction of antioxidants from oregano. The transducers differed in the amount of energy transmitted into the medium. Designs varied from the base model (T1), a larger cylindrical headmass (T2), a stepped circular section sonotrode (T3) and a multiplate configuration (T4). The highest nominal power density provided according to the calorimetric method was for T4 (151.6⯱â¯7.1â¯W/L). The T2 produced a more uniform acoustic field and a higher acoustic pressure (150.6⯱â¯20.5â¯kPa). Both parameters had an impact on total phenolics and antioxidants extraction with CO2 under supercritical conditions (35â¯MPa, 35⯰C, 2.3% ethanol as co-solvent). T4 and T2 were equally efficient (4.0⯱â¯0.2 and 4.2⯱â¯0.2â¯mgâ¯GA/g) for phenolic extraction, and with respect to antioxidant capacity, the best performance was that of T4 (26.4⯱â¯1.1⯵molâ¯TE/g). Of the antioxidant compounds extracted, flavones and flavanones were identified. Therefore, transducer geometry influenced the amount and distribution of energy transmitted into the medium, thus determining the efficiency of the extraction process.
RESUMO
Defective textures in dry-cured ham are a common problem that causes important economic losses in the ham industry. An increase of proteolysis during the dry-cured ham processing may lead to high adhesiveness and consumer rejection of the product. Therefore, the influence of proteolysis index (PI) on instrumental adhesiveness, free amino acids and volatile profile of dry-cured ham was assessed. Two hundred Spanish dry-cured ham units were firstly classified according to their PI: low PI (<32%), medium PI (32-36%) and high PI (>36%). Instrumental adhesiveness was affected by PI, showing the lowest values in the batch with low PI. Significant differences (Pâ¯<â¯0.05) among groups were found in six amino acids: serine, taurine, cysteine, methionine, isoleucine and leucine. The content of leucine, serine, methionine, and isoleucine significantly (Pâ¯<â¯0.05) increased as the proteolysis index rose. However, taurine and cysteine content showed an opposite behaviour, reaching the highest values in the dry-cured hams with low PI. Significant differences (Pâ¯<â¯0.001) in the total content of volatile compounds among ham groups were observed, with the highest concentration in the batch with low PI, and decreasing the concentration as the PI increased. Regarding the different chemical families of volatiles, the hydrocarbons (the main family), alcohols, aldehydes, ketones and acids were more abundant in the hams showing the lowest PI. Esters did not show significant differences among the three batches of hams studied. The present study demonstrated that, apart from the effect on the adhesiveness, an excessive proteolysis seems to be associated with negative effects on the taste and aroma of the dry-cured ham.
Assuntos
Aminoácidos/análise , Análise de Alimentos/métodos , Conservação de Alimentos/métodos , Proteínas de Carne/análise , Odorantes/análise , Carne Vermelha/análise , Compostos Orgânicos Voláteis/análise , Adesividade , Animais , Proteólise , Olfato , Sus scrofa , PaladarRESUMO
This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.
RESUMO
Online ultrasound measurements were taken using pulse-echo mode in loins (Longissimus dorsi) and hams at different salting times (up to 30days). From the time-domain ultrasonic wave, the time of flight (TOF) was computed as well as its variation between two signals (ΔTOF). A progressive decrease in TOF during dry salting was found, which was linked to the salt gain, water loss and the reduction in sample thickness. Predictive models based on the ultrasonic parameters (ΔTOF and initial time of flight, TOF0) correctly classified 85% of the loins and 90% of the hams into 3 groups of salt content (low/medium/high). The results obtained confirm that the use of the ultrasonic pulse-echo technique is of great potential in the non-destructive monitoring of dry salting in pork loins and hams, as well as in the prediction of the salt gain for classification purposes.