Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200362, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34538146

RESUMO

Land-use change has a direct impact on species survival and reproduction, altering their spatio-temporal distributions. It acts as a selective force that favours the abundance and diversity of reservoir hosts and affects host-pathogen dynamics and prevalence. This has led to land-use change being a significant driver of infectious diseases emergence. Here, we predict the presence of rodent taxa and map the zoonotic hazard (potential sources of harm) from rodent-borne diseases in the short and long term (2025 and 2050). The study considers three different land-use scenarios based on the shared socioeconomic pathways narratives (SSPs): sustainable (SSP1-Representative Concentration Pathway (RCP) 2.6), fossil-fuelled development (SSP5-RCP 8.5) and deepening inequality (SSP4-RCP 6.0). We found that cropland expansion into forest and pasture may increase zoonotic hazards in areas with high rodent-species diversity. Nevertheless, a future sustainable scenario may not always reduce hazards. All scenarios presented high heterogeneity in zoonotic hazard, with high-income countries having the lowest hazard range. The SSPs narratives suggest that opening borders and reducing cropland expansion are critical to mitigate current and future zoonotic hazards globally, particularly in middle- and low-income economies. Our study advances previous efforts to anticipate the emergence of zoonotic diseases by integrating past, present and future information to guide surveillance and mitigation of zoonotic hazards at the regional and local scale. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Interações Hospedeiro-Patógeno , Fatores Socioeconômicos , Zoonoses/epidemiologia , Animais , Interações Hospedeiro-Parasita , Humanos , Doenças dos Roedores/epidemiologia
2.
Ecohealth ; 16(4): 726-733, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31664588

RESUMO

Mosquito-borne flaviviruses (MBFVs) are of public and animal health concern because they cause millions of human deaths annually and impact domestic animals and wildlife globally. MBFVs are phylogenetically divided into two clades, one is transmitted by Aedes mosquitoes (Ae-MBFVs) associated with mammals and the other by Culex mosquitoes (Cx-MBFVs) associated with birds. However, this assumption has not been evaluated. Here, we synthesized 79 published reports of MBFVs from wild mammals, estimating their host. Then, we tested whether the host specificity was biased to sampling and investigation efforts or to phylogenetic relationships using a viral phylogenetic tree drawn from analyzing whole flavivirus genomes obtained in GenBank. We found in total 18 flaviviruses, nine related to Aedes spp. and nine to Culex spp. infecting 129 mammal species. Thus, this supports that vectors are transmitting MBFV across available host clades and that ornithophilic mosquitoes are readily infecting mammals. Although most of the mosquito species are generalists in their host-feeding preferences, we also found a certain degree of MBFV's specificity, as most of them infect closely related mammal species. The present study integrates knowledge regarding MBFVs, and it may help to understand their transmission dynamics between viruses, vectors, and mammal hosts.


Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/imunologia , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/isolamento & purificação , Aedes/virologia , Animais , Animais Domésticos/virologia , Culex/virologia , Interações entre Hospedeiro e Microrganismos/genética , Mamíferos/genética , Mamíferos/virologia
3.
Viruses ; 11(7)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336858

RESUMO

Hantaviruses are transmitted by rodents producing the hantavirus pulmonary syndrome (HPS) in the Americas. Today, no human cases of HPS have been reported in Mexico in spite of similar environmental conditions with Central America and the USA where several cases have occurred. To understand the current situation of hantaviruses in Mexico and the public health risk, a systematic review of studies was conducted reporting hantaviruses in rodents to known state seroprevalence and hantavirus genotypes. Simultaneously, this study identified the potential hantaviruses based on the phylogenetic diversity (PD) of hantaviruses reported in the Americas in hosts with the distribution in Mexico. A total 3862 rodents belonging to 82 species have been tested since 1999 to 2017. Overall, 392 individuals representing 43 rodent species were seropositive, and the seroprevalence ranged from 0 to 69.22%. Seven hantaviruses genotypes have been described in Mexico and three are zoonotic. Four host species of rodents are widely distributed in Mexico harboring the highest PD of viruses. According to the hosts distribution, 16 genotypes could be circulating in Mexico and some of these represent a potential risk for public health. This study proposed multidisciplinary and interinstitutional collaborations to implement systematic surveillance in rodents.


Assuntos
Infecções por Hantavirus/epidemiologia , Orthohantavírus/genética , Roedores/virologia , Animais , Reservatórios de Doenças , Genótipo , Orthohantavírus/patogenicidade , Infecções por Hantavirus/transmissão , Infecções por Hantavirus/virologia , Síndrome Pulmonar por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/virologia , Especificidade de Hospedeiro , Humanos , México/epidemiologia , Filogenia , Vírus de RNA/genética , Análise de Sequência de DNA , Estudos Soroepidemiológicos , Zoonoses/epidemiologia , Zoonoses/transmissão , Zoonoses/virologia
4.
Viruses ; 11(7)2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340455

RESUMO

Hantaviruses (Family: Hantaviridae; genus: Orthohantavirus) and their associated human diseases occur globally and differ according to their geographic distribution. The structure of small mammal assemblages and phylogenetic relatedness among host species are suggested as strong drivers for the maintenance and spread of hantavirus infections in small mammals. We developed predictive models for hantavirus infection prevalence in rodent assemblages using defined ecological correlates from our current knowledge of hantavirus-host distributions to provide predictive models at the global and continental scale. We utilized data from published research between 1971-2014 and determined the biological and ecological characteristics of small mammal assemblages to predict the prevalence of hantavirus infections. These models are useful in predicting hantavirus disease outbreaks based on environmental and biological information obtained through the surveillance of rodents.


Assuntos
Infecções por Hantavirus/virologia , Interações Hospedeiro-Patógeno , Orthohantavírus/classificação , Orthohantavírus/fisiologia , Filogenia , Zoonoses/virologia , Animais , Biodiversidade , Evolução Biológica , Infecções por Hantavirus/transmissão , Humanos , Replicação Viral
5.
Ecohealth ; 15(1): 163-208, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29713899

RESUMO

Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.


Assuntos
Reservatórios de Doenças/virologia , Orthohantavírus/isolamento & purificação , Roedores/classificação , Roedores/virologia , Zoonoses/epidemiologia , Animais
6.
Proc Biol Sci ; 285(1893): 20182178, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963915

RESUMO

Zoonotic diseases transmitted by wildlife affect biological conservation, public and animal health, and the economy. Current research efforts are aimed at finding wildlife pathogens at a given location. However, a meta-analytical approach may reveal emerging macroecological patterns in the host-pathogen relationship at different temporal and spatial scales. West Nile virus (WNV) is a pathogen with worldwide detrimental impacts on bird populations. To understand macroecological patterns driving WNV infection, we aimed to recognize unknown competent reservoirs using three disease metrics-serological prevalence (SP), molecular prevalence (MP) and mortality (M)-and test if these metrics are correlated with the evolutionary history, geographical origin of bird species, viral strain, time-space and methodology. We performed a quantitative review of field studies on birds sampled for WNV. We obtained 4945 observations of 949 species from 39 countries. Our analysis supported the idea that MP and M are good predictors of reservoir competence, and allowed us to identify potential competent reservoirs. Furthermore, results indicated that the variability of these metrics was attributable to phylogeny, time-space and sample size. A macroecological approach is needed to recognize susceptible species and competent reservoirs, and to identify other factors driving zoonotic diseases originating from wildlife.


Assuntos
Doenças das Aves/epidemiologia , Aves , Reservatórios de Doenças/veterinária , Febre do Nilo Ocidental/veterinária , Zoonoses/epidemiologia , Animais , Doenças das Aves/mortalidade , Doenças das Aves/virologia , Suscetibilidade a Doenças/epidemiologia , Suscetibilidade a Doenças/mortalidade , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Prevalência , Estudos Soroepidemiológicos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/mortalidade , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia , Zoonoses/mortalidade , Zoonoses/virologia
7.
Philos Trans R Soc Lond B Biol Sci ; 372(1722)2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28438918

RESUMO

Biodiversity is of critical value to human societies, but recent evidence that biodiversity may mitigate infectious-disease risk has sparked controversy among researchers. The majority of work on this topic has focused on direct assessments of the relationship between biodiversity and endemic-pathogen prevalence, without disentangling intervening mechanisms; thus study outcomes often differ, fuelling more debate. Here, we suggest two critical changes to the approach researchers take to understanding relationships between infectious disease, both endemic and emerging, and biodiversity that may help clarify sources of controversy. First, the distinct concepts of hazards versus risks need to be separated to determine how biodiversity and its drivers may act differently on each. This distinction is particularly important since it illustrates that disease emergence drivers in humans could be quite different to the general relationship between biodiversity and transmission of endemic pathogens. Second, the interactive relationship among biodiversity, anthropogenic change and zoonotic disease risk, including both direct and indirect effects, needs to be recognized and accounted for. By carefully disentangling these interactions between humans' activities and pathogen circulation in wildlife, we suggest that conservation efforts could mitigate disease risks and hazards in novel ways that complement more typical disease control efforts.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.


Assuntos
Biodiversidade , Doenças Transmissíveis Emergentes/epidemiologia , Zoonoses/epidemiologia , Animais , Doenças Transmissíveis Emergentes/etiologia , Humanos , Prevalência , Modelos de Riscos Proporcionais , Risco , Zoonoses/etiologia
8.
Ecohealth ; 14(2): 329-341, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28315039

RESUMO

Mycobacterium ulcerans (MU), the causative agent of Buruli ulcer, is present in a wide spectrum of environments, including terrestrial and aquatic ecosystems in tropical regions. The most promising studies on the epidemiological risk of this disease suggest that some ecological settings may favor infection of animals with MU including human. A species' needs and impacts on resources and the environment, i.e., its ecological niche, may influence its susceptibility to be infected by this microbial form. For example, some Naucoridae may dive in fresh waters to prey upon infected animals and thus may get infected with MU. However, these studies have rarely considered that inference on the ecological settings favoring infection and transmission may be confounded because host carrier sister species have similar ecological niches, and potentially the same host-microbe interactions. Hence, a relationship between the ecological niche of Naucoridae and its infection with MU may be due to a symbiotic relationship between the host and the pathogen, rather than its ecological niche. To account for this confounding effect, we investigated the relationships between surrogates of the ecological niche of water bug species and their susceptibility to MU, by performing phylogenetic comparative analyses on a large dataset of 11 families of water bugs collected in 10 different sites across Cameroon, central Africa. Our results indicate that MU circulates and infects a couple of host taxa, i.e., Belostomatidae, Naucoridae, living both in the aquatic vegetation and as predators inside the trophic network and sister species of water bugs have indeed similar host-microbe interactions with MU.


Assuntos
Úlcera de Buruli/microbiologia , Insetos/microbiologia , Mycobacterium ulcerans/patogenicidade , Animais , Comportamento Animal , Úlcera de Buruli/transmissão , Camarões , Humanos , Filogenia
10.
Ecol Evol ; 5(4): 865-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25750713

RESUMO

The potential for disease transmission at the interface of wildlife, domestic animals and humans has become a major concern for public health and conservation biology. Research in this subject is commonly conducted at local scales while the regional context is neglected. We argue that prevalence of infection at local and regional levels is influenced by three mechanisms occurring at the landscape level in a metacommunity context. First, (1) dispersal, colonization, and extinction of pathogens, reservoir or vector hosts, and nonreservoir hosts, may be due to stochastic and niche-based processes, thus determining distribution of all species, and then their potential interactions, across local communities (metacommunity structure). Second, (2) anthropogenic processes may drive environmental filtering of hosts, nonhosts, and pathogens. Finally, (3) phylogenetic diversity relative to reservoir or vector host(s), within and between local communities may facilitate pathogen persistence and circulation. Using a metacommunity approach, public heath scientists may better evaluate the factors that predispose certain times and places for the origin and emergence of infectious diseases. The multidisciplinary approach we describe fits within a comprehensive One Health and Ecohealth framework addressing zoonotic infectious disease outbreaks and their relationship to their hosts, other animals, humans, and the environment.

11.
PLoS Negl Trop Dis ; 8(11): e3298, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375173

RESUMO

BACKGROUND: An understanding of the factors driving the distribution of pathogens is useful in preventing disease. Often we achieve this understanding at a local microhabitat scale; however the larger scale processes are often neglected. This can result in misleading inferences about the distribution of the pathogen, inhibiting our ability to manage the disease. One such disease is Buruli ulcer, an emerging neglected tropical disease afflicting many thousands in Africa, caused by the environmental pathogen Mycobacterium ulcerans. Herein, we aim to describe the larger scale landscape process describing the distribution of M. ulcerans. METHODOLOGY: Following extensive sampling of the community of aquatic macroinvertebrates in Cameroon, we select the 5 dominant insect Orders, and conduct an ecological niche model to describe how the distribution of M. ulcerans positive insects changes according to land cover and topography. We then explore the generalizability of the results by testing them against an independent dataset collected in a second endemic region, French Guiana. PRINCIPAL FINDINGS: We find that the distribution of the bacterium in Cameroon is accurately described by the land cover and topography of the watershed, that there are notable seasonal differences in distribution, and that the Cameroon model does not predict the distribution of M. ulcerans in French Guiana. CONCLUSIONS/SIGNIFICANCE: Future studies of M. ulcerans would benefit from consideration of local structure of the local stream network in future sampling, and further work is needed on the reasons for notable differences in the distribution of this species from one region to another. This work represents a first step in the identification of large-scale environmental drivers of this species, for the purposes of disease risk mapping.


Assuntos
Úlcera de Buruli/epidemiologia , Reservatórios de Doenças/microbiologia , Insetos/microbiologia , Mycobacterium ulcerans/isolamento & purificação , Animais , Úlcera de Buruli/transmissão , Camarões/epidemiologia , Meio Ambiente , Mapeamento Geográfico , Mycobacterium ulcerans/genética
12.
Science ; 337(6094): 580-3, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22859488

RESUMO

Despite considerable current interest in biological invasions, the common life-history characteristics of successful invaders remain elusive. The widely held hypothesis that successful invaders have high reproductive rates has received little empirical support; however, alternative possibilities are seldom considered. Combining a global comparative analysis of avian introductions (>2700 events) with demographic models and phylogenetic comparative methods, we show that although rapid population growth may be advantageous during invasions under certain circumstances, more generally successful invaders are characterized by life-history strategies in which they give priority to future rather than current reproduction. High future breeding expectations reduce the costs of reproductive failure under uncertain conditions and increase opportunities to explore the environment and respond to novel ecological pressures.


Assuntos
Aves/fisiologia , Espécies Introduzidas , Reprodução , Animais , Aves/classificação , Filogenia , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA