Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 961041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992722

RESUMO

Serine palmitoyltransferase (SPT) catalyzes the first and committed step in sphingolipid biosynthesis condensating L-serine and acyl-CoA to form 3-oxo-sphinganine. Whenever the structural gene for SPT is present in genomes of Rhodobacteria (α-, ß-, and γ-Proteobacteria), it co-occurs with genes coding for a putative acyl carrier protein (ACP) and a putative acyl-CoA synthetase (ACS). In the α-proteobacterium Caulobacter crescentus, CC_1162 encodes an SPT, whereas CC_1163 and CC_1165 encode the putative ACP and ACS, respectively, and all three genes are known to be required for the formation of the sphingolipid intermediate 3-oxo-sphinganine. Here we show that the putative ACP possesses a 4'-phosphopantetheine prosthetic group, is selectively acylated by the putative ACS and therefore is a specialized ACP (AcpR) required for sphingolipid biosynthesis in Rhodobacteria. The putative ACS is unable to acylate coenzyme A or housekeeping ACPs, but acylates specifically AcpR. Therefore, it is a specialized acyl-ACP synthetase (AasR). SPTs from C. crescentus, Escherichia coli B, or Sphingomonas wittichii use preferentially acyl-AcpR as thioester substrate for 3-oxo-sphinganine synthesis. Whereas acyl-AcpR from C. crescentus is a good substrate for SPTs from distinct Rhodobacteria, acylation of a specific AcpR is achieved by the cognate AasR from the same bacterium. Rhodobacteria might use this more complex way of 3-oxo-sphinganine formation in order to direct free fatty acids toward sphingolipid biosynthesis.

2.
Biotechnol Notes ; 3: 54-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-39416454

RESUMO

Synthetic biology has captivated scientists' imagination. It promises answers to some of the grand challenges society is facing: worsening climate crisis, insufficient food supplies for ever growing populations, and many persisting infectious and genetic diseases. While many challenges remain unaddressed, after almost two decades since its inception a number of products created by engineered biology are starting to reach the public. European scientists and entrepreneurs have been participating in delivering on the promises of synthetic biology. Associations like the European Synthetic Biology Society (EUSynBioS) play a key role in disseminating advances in the field, connecting like-minded people and promoting scientific development. In this perspective article, we review the current landscape of the synthetic biology community in Europe, discussing the state of related academic research and industry. We also discuss how EUSynBioS has helped to build bridges between professionals across the continent.

3.
Environ Microbiol ; 23(1): 143-159, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33063925

RESUMO

Sphingolipids are essential and common membrane components in eukaryotic organisms, participating in many important cellular functions. Only a few bacteria are thought to harbour sphingolipids in their membranes, among them the well-studied α-proteobacterium Caulobacter crescentus, a model organism for asymmetric cell division and cellular differentiation. Here, we report that C. crescentus wild type produces several molecular species of dihydroceramides, which are not produced in a mutant lacking the structural gene for serine palmitoyltransferase (spt). Whereas growth of a spt-deficient mutant and wild type are indistinguishable during the exponential phase of growth, survival of the spt-deficient mutant is much reduced, in comparison with wild type, during stationary phase of growth, especially at elevated temperatures. The structural gene for spt is located within a genomic cluster, comprising another 16 genes and which, like spt, are important for fitness of C. crescentus. Mutants deficient in genes linked to spt by high cofitness were unable to produce dihydroceramide or to survive in stationary phase of growth at elevated temperatures. At least five structural genes are required for dihydroceramide biosynthesis in C. crescentus and sphingolipid biosynthesis is needed for survival of this bacterium and the integrity of its outer membrane.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/crescimento & desenvolvimento , Caulobacter crescentus/metabolismo , Ceramidas/biossíntese , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Mutação , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/biossíntese
4.
Angew Chem Int Ed Engl ; 59(48): 21372-21376, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32735732

RESUMO

The geometry of reaction compartments can affect the local outcome of interface-restricted reactions. Giant unilamellar vesicles (GUVs) are commonly used to generate cell-sized, membrane-bound reaction compartments, which are, however, always spherical. Herein, we report the development of a microfluidic chip to trap and reversibly deform GUVs into cigar-like shapes. When trapping and elongating GUVs that contain the primary protein of the bacterial Z ring, FtsZ, we find that membrane-bound FtsZ filaments align preferentially with the short GUV axis. When GUVs are released from this confinement and membrane tension is relaxed, FtsZ reorganizes reversibly from filaments into dynamic rings that stabilize membrane protrusions; a process that allows reversible GUV deformation. We conclude that microfluidic traps are useful for manipulating both geometry and tension of GUVs, and for investigating how both affect the outcome of spatially-sensitive reactions inside them, such as that of protein self-organization.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dispositivos Lab-On-A-Chip , Lipossomas Unilamelares/metabolismo , Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Lipossomas Unilamelares/química
5.
Sci Rep ; 10(1): 10447, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591587

RESUMO

As one of the key elements in bacterial cell division, the cytoskeletal protein FtsZ appears to be highly involved in circumferential treadmilling along the inner membrane, yielding circular vortices when transferred to flat membranes. However, it remains unclear how a membrane-targeted protein can produce these dynamics. Here, we dissect the roles of membrane binding, GTPase activity, and the unstructured C-terminal linker on the treadmilling of a chimera FtsZ protein through in vitro reconstitution of different FtsZ-YFP-mts variants on supported membranes. In summary, our results suggest substantial robustness of dynamic vortex formation, where only significant mutations, resulting in abolished membrane binding or compromised lateral interactions, are detrimental for the generation of treadmilling rings. In addition to GTPase activity, which directly affects treadmilling dynamics, we found a striking correlation of membrane binding with treadmilling speed as a result of changing the MTS on our chimera proteins. This discovery leads to the hypothesis that the in vivo existence of two alternative tether proteins for FtsZ could be a mechanism for controlling FtsZ treadmilling.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Microscopia de Fluorescência , Ligação Proteica
6.
Nano Lett ; 18(11): 7133-7140, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30295028

RESUMO

Reconstituting functional modules of biological systems in vitro is an important yet challenging goal of bottom-up synthetic biology, in particular with respect to their precise spatiotemporal regulation. One of the most desirable external control parameters for the engineering of biological systems is visible light, owing to its specificity and ease of defined application in space and time. Here we engineered the PhyB-PIF6 system to spatiotemporally target proteins by light onto model membranes and thus sequentially guide protein pattern formation and structural assembly in vitro from the bottom up. We show that complex micrometer-sized protein patterns can be printed on time scales of seconds, and the pattern density can be precisely controlled by protein concentration, laser power, and activation time. Moreover, when printing self-assembling proteins such as the bacterial cytoskeleton protein FtsZ, the targeted assembly into filaments and large-scale structures such as artificial rings can be accomplished. Thus, light mediated sequential protein assembly in cell-free systems represents a promising approach to hierarchically building up the next level of complexity toward a minimal cell.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Proteínas do Citoesqueleto/química , Membranas Artificiais , Fitocromo B/química
7.
Nat Commun ; 9(1): 3942, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258191

RESUMO

The E. coli MinCDE system has become a paradigmatic reaction-diffusion system in biology. The membrane-bound ATPase MinD and ATPase-activating protein MinE oscillate between the cell poles followed by MinC, thus positioning the main division protein FtsZ at midcell. Here we report that these energy-consuming MinDE oscillations may play a role beyond constraining MinC/FtsZ localization. Using an in vitro reconstitution assay, we show that MinDE self-organization can spatially regulate a variety of functionally completely unrelated membrane proteins into patterns and gradients. By concentration waves sweeping over the membrane, they induce a direct net transport of tightly membrane-attached molecules. That the MinDE system can spatiotemporally control a much larger set of proteins than previously known, may constitute a MinC-independent pathway to division site selection and chromosome segregation. Moreover, the here described phenomenon of active transport through a traveling diffusion barrier may point to a general mechanism of spatiotemporal regulation in cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , DNA/metabolismo , Escherichia coli
8.
PLoS Biol ; 16(5): e2004845, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775478

RESUMO

FtsZ, the primary protein of the bacterial Z ring guiding cell division, has been recently shown to engage in intriguing treadmilling dynamics along the circumference of the division plane. When coreconstituted in vitro with FtsA, one of its natural membrane anchors, on flat supported membranes, these proteins assemble into dynamic chiral vortices compatible with treadmilling of curved polar filaments. Replacing FtsA by a membrane-targeting sequence (mts) to FtsZ, we have discovered conditions for the formation of dynamic rings, showing that the phenomenon is intrinsic to FtsZ. Ring formation is only observed for a narrow range of protein concentrations at the bilayer, which is highly modulated by free Mg2+ and depends upon guanosine triphosphate (GTP) hydrolysis. Interestingly, the direction of rotation can be reversed by switching the mts from the C-terminus to the N-terminus of the protein, implying that the filament attachment must have a perpendicular component to both curvature and polarity. Remarkably, this chirality switch concurs with previously shown inward or outward membrane deformations by the respective FtsZ mutants. Our results lead us to suggest an intrinsic helicity of FtsZ filaments with more than one direction of curvature, supporting earlier hypotheses and experimental evidence.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli , Guanosina Trifosfato/metabolismo , Magnésio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA