Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 73-85, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759270

RESUMO

HYPOTHESIS: Multicore flower-like iron oxide nanoparticles (IONPs) are among the best candidates for magnetic hyperthermia applications against cancers. However, they are rarely investigated in physiological environments and their efficacy against cancer cells has been even less studied. The combination of magnetic hyperthermia, using multicore IONPs, with selected bioactive molecules should lead to an enhanced activity against cancer cells. EXPERIMENTS: Multicore IONPs were synthesized by a seeded-growth thermal decomposition approach. Then, the cytotoxicity, cell uptake, and efficacy of the magnetic hyperthermia approach were studied with six cancer cell lines: PANC1 (pancreatic carcinoma), Mel202 (uveal melanoma), MCF7 (breast adenocarcinoma), MB231 (triple-negative breast cancer line), A549 (lung cancer), and HCT116 (colon cancer). Finally, IONPs were modified with a chemotherapeutic drug (SN38) and tumor suppressor microRNAs (miR-34a, miR-182, let-7b, and miR-137), to study their activity against cancer cells with and without combination with magnetic hyperthermia. FINDINGS: Two types of multicore IONPs with very good heating abilities under magnetic stimulation have been prepared. Their concentration-dependent cytotoxicity and internalization have been established, showing a strong dependence on the cell line and the nanoparticle type. Magnetic hyperthermia causes significant cell death that is dramatically enhanced in combination with the bioactive molecules.


Assuntos
Hipertermia Induzida , Nanopartículas Magnéticas de Óxido de Ferro , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Linhagem Celular Tumoral , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Terapia Combinada , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos
2.
Mater Today Bio ; 23: 100817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37822453

RESUMO

Immunotherapy has emerged as a promising strategy to eradicate cancer cells. Particularly, the development of cancer vaccines to induce a potent and sustained antigen-specific T cell response has become a center of attention. Herein, we describe a novel immunotherapy based on magnetic nanoparticles (MNP) covalently modified with the OVA254-267 antigen and a CpG oligonucleotide via disulfide bonds. The MNP-CpG-COVA significantly enhances dendritic cell activation and CD8+ T cell antitumoral response against B16-OVA melanoma cells in vitro. Notably, the immune response induced by the covalently modified MNP is more potent and sustained over time than that triggered by the free components, highlighting the advantage of nanoformulations in immunotherapies. What is more, the nanoparticles are stable in the blood after in vivo administration and induce potent levels of systemic tumor-specific effector CD8 + T cells. Overall, our findings highlight the potential of covalently functionalized MNP to induce robust immune responses against mouse melanoma.

3.
Pharmaceutics ; 14(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893782

RESUMO

The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.

4.
Nanoscale ; 14(31): 11129-11138, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904896

RESUMO

In this work, we describe the synthesis of magnetic nanoparticles composed of a maghemite core (MNP) and three different coatings (dextran, D-MNP; carboxymethyldextran, CMD-MNP; and dimercaptosuccinic acid, DMSA-MNP). Their interactions with red blood cells, plasma proteins, and macrophages were also assessed. CMD-MNP was selected for its good biosafety profile and for promoting a pro-inflammatory response in macrophages, which was associated with the nature of the coating. Thus, we proposed a smart miRNA delivery system using CMD-MNP as a carrier for cancer immunotherapy applications. Particularly, we prove that CMD-MNP-miRNA155 and CMD-MNP-miRNA125b nanoparticles can display a pro-inflammatory response in human macrophages by increasing the expression of CD80 and the levels of TNF-α and IL-6. Hence, our proposed miRNA-delivery nanosystem can be exploited as a new immunotherapeutic tool based on magnetic nanoparticles.


Assuntos
Nanopartículas de Magnetita , MicroRNAs , Nanopartículas , Humanos , Macrófagos , Magnetismo , Succímero
5.
J Colloid Interface Sci ; 613: 447-460, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35051720

RESUMO

Stimuli-responsive nanomaterials are very attractive for biomedical applications. They can be activated through external stimuli or by the physico-chemical conditions present in cells or tissues. Here, we describe the preparation of hybrid iron oxide-manganese oxide core-satellite shell nanostructures that change their contrast mode in magnetic resonance imaging (MRI) from T2 to T1, after being internalized by cells. This occurs by the dissolution of the MnO2 of the shell, preserving intact the iron oxide at the core. First, we study the seeded-growth synthesis of iron oxide-manganese oxide nanoparticles studying the effect of varying the core size of the magnetic seeds and the concentration of the surfactant. This allows tuning the size and shape of the final hybrid nanostructure. Then, we show that the shell can be removed by a redox reaction with glutathione, which is naturally present inside the cells at much higher concentrations than outside the cells. Finally, the dissolution of the MnO2 shell and the change in the contrast mode is confirmed in cell cultures. After this process, the iron oxide nanoparticles at the core remain intact and are still active as heating mediators when an alternating magnetic field is applied.


Assuntos
Compostos de Manganês , Nanopartículas , Compostos Férricos , Imageamento por Ressonância Magnética , Óxidos
6.
Cancers (Basel) ; 13(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34439250

RESUMO

Magnetic nanoparticles (MNP) are employed as nanocarriers and in magnetic hyperthermia (MH) for the treatment of cancers. Herein, a smart drug delivery system composed of MNP functionalized with the cytotoxic drug gemcitabine (MNP-GEM) has been thoroughly evaluated. The linker employed is based on a disulfide bond and allows the controlled release of GEM under a highly reducing environment, which is frequently present in the cytoplasm of tumor cells. The stability, MH, and the interaction with plasma proteins of the nanoparticles are evaluated, highlighting their great potential for biological applications. Their cytotoxicity is assessed in three pancreatic cancer cell lines with different sensitivity to GEM, including the generation of reactive oxygen species (ROS), the effects on the cell cycle, and the mechanisms of cell death involved. Remarkably, the proposed nanocarrier is better internalized than unmodified nanoparticles, and it is particularly effective in PANC-1 cells, resistant to GEM, but not in non-tumoral keratinocytes. Additionally, its combination with MH produces a synergistic cytotoxic effect in all cancer cell lines tested. In conclusion, MNP-GEM presents a promising potential for treating pancreatic cancer, due to multiple parameters, such as reduced binding to plasma proteins, increased internalization, and synergistic activity when combined with MH.

7.
Adv Mater ; 33(30): e2100077, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117667

RESUMO

Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.


Assuntos
Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocápsulas/química , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Temperatura Alta , Humanos , Hipertermia Induzida , Raios Infravermelhos , Campos Magnéticos , Magnetismo , Camundongos , Imagem Óptica , Terapia Fototérmica , Compostos de Prata/química
8.
J Colloid Interface Sci ; 578: 510-521, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540550

RESUMO

HYPOTHESIS: Superparamagnetic MnxFe3-xO4 nanoparticles are promising materials for applications in biomedicine and other fields. Small variations in the Mn/Fe ratio have a strong impact on the properties of the nanoparticles. Those variations may be caused by the synthesis itself and by common post-synthesis manipulations like surface modification. EXPERIMENTS: Mn-ferrite nanoparticles have been prepared changing systematically the Mn/Fe ratio of the metal precursors and repeating each reaction three times. Nanoparticles were subjected to surface modification with two different and typical molecules to stabilize them in aqueous media. The discrepancy in the Mn/Fe ratios of the precursors with the ones measured after the synthesis and the surface modification have been studied, as well as its impact on the saturation magnetization, blocking temperature, contrast enhancement for magnetic resonance imaging, magnetic heating, and on the cytotoxicity. FINDINGS: Mn is incorporated in the nanoparticles in a relatively lower amount than Fe and, as this report shows for the first time, both Mn and Fe ions leach out from the nanoparticles during the surface modification step. The blocking temperature decreases exponentially as the Mn/Fe ratio increases. The transverse and longitudinal relaxation times and the magnetic heating ability change appreciably even with small variations in the composition.


Assuntos
Nanopartículas , Cátions , Imageamento por Ressonância Magnética , Magnetismo , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA