Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 11(20): e15841, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37849046

RESUMO

Since short sleep duration adversely affects cardiovascular (CV) health, we investigated the effects of exposures to total sleep deprivation (TSD), and baseline (BL) and recovery (REC) sleep on CV measures. We conducted a 5-day experiment at months 2 and 4 in two separate studies (N = 11 healthy adults; 5 females). During these repeated experiments, CV measures [stroke volume (SV), cardiac index (CI), systemic vascular resistance index (SVRI), left ventricular ejection time, heart rate (HR), systolic and diastolic blood pressure (SBP and DBP) and mean arterial pressure (MAP)] were collected at three assessment time points after: (1) two BL 8 h time-in-bed (TIB) sleep opportunity nights; (2) a TSD night; and (3) two REC 8-10 h TIB nights. CV measures were also collected pre-study. TSD significantly increased SV and CI, and decreased SVRI, with large effect sizes, which importantly were reversed with recovery, indicating these measures are possible novel biomarkers for assessing the adverse consequences of TSD. Pre-study SV, CI, SVRI, HR, SBP, and MAP measures also significantly associated with TSD CV responses at months 2 and 4 [Pearson's r: 0.615-0.862; r2 : 0.378-0.743], indicating they are robust correlates of future TSD CV responses. Our novel findings highlight the critical impact of sleep on CV health across time.


Assuntos
Sistema Cardiovascular , Privação do Sono , Adulto , Feminino , Humanos , Privação do Sono/complicações , Sono/fisiologia , Frequência Cardíaca , Biomarcadores
2.
Front Neurosci ; 17: 1201637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547137

RESUMO

Introduction: We determined whether cardiovascular (CV) measures show trait-like responses after repeated total sleep deprivation (TSD), baseline (BL) and recovery (REC) exposures in two long-duration studies (total N = 11 adults). Methods: A 5-day experiment was conducted twice at months 2 and 4 in a 4-month study (N = 6 healthy adults; 3 females; mean age ± SD, 34.3 ± 5.7 years; mean BMI ± SD, 22.5 ± 3.2 kg/m2), and three times at months 2, 4, and 8 in an 8-month study (N = 5 healthy adults; 2 females; mean age ± SD, 33.6 ± 5.17 years; mean BMI ± SD, 27.1 ± 4.9 kg/m2). Participants were not shift workers or exposed to TSD in their professions. During each experiment, various seated and standing CV measures were collected via echocardiography [stroke volume (SV), heart rate (HR), cardiac index (CI), left ventricular ejection time (LVET), and systemic vascular resistance index (SVRI)] or blood pressure monitor [systolic blood pressure (SBP)] after (1) two BL 8h time in bed (TIB) nights; (2) an acute TSD night; and (3) two REC 8-10 h TIB nights. Intraclass correlation coefficients (ICCs) assessed CV measure stability during BL, TSD, and REC and for the BL and REC average (BL + REC) across months 2, 4, and 8; Spearman's rho assessed the relative rank of individuals' CV responses across measures. Results: Seated BL (0.693-0.944), TSD (0.643-0.962) and REC (0.735-0.960) CV ICCs showed substantial to almost perfect stability and seated BL + REC CV ICCs (0.552-0.965) showed moderate to almost perfect stability across months 2, 4, and 8. Individuals also exhibited significant, consistent responses within seated CV measures during BL, TSD, and REC. Standing CV measures showed similar ICCs for BL, TSD, and REC and similar response consistency. Discussion: This is the first demonstration of remarkably robust phenotypic stability of a number of CV measures in healthy adults during repeated TSD, BL and REC exposures across 2, 4, and 8 months, with significant consistency of responses within CV measures. The cardiovascular measures examined in our studies, including SV, HR, CI, LVET, SVRI, and SBP, are useful biomarkers that effectively track physiology consistently across long durations and repeated sleep deprivation and recovery.

3.
Front Physiol ; 12: 795321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087419

RESUMO

There are substantial individual differences (resilience and vulnerability) in performance resulting from sleep loss and psychosocial stress, but predictive potential biomarkers remain elusive. Similarly, marked changes in the cardiovascular system from sleep loss and stress include an increased risk for cardiovascular disease. It remains unknown whether key hemodynamic markers, including left ventricular ejection time (LVET), stroke volume (SV), heart rate (HR), cardiac index (CI), blood pressure (BP), and systemic vascular resistance index (SVRI), differ in resilient vs. vulnerable individuals and predict differential performance resilience with sleep loss and stress. We investigated for the first time whether the combination of total sleep deprivation (TSD) and psychological stress affected a comprehensive set of hemodynamic measures in healthy adults, and whether these measures differentiated neurobehavioral performance in resilient and vulnerable individuals. Thirty-two healthy adults (ages 27-53; 14 females) participated in a 5-day experiment in the Human Exploration Research Analog (HERA), a high-fidelity National Aeronautics and Space Administration (NASA) space analog isolation facility, consisting of two baseline nights, 39 h TSD, and two recovery nights. A modified Trier Social Stress Test induced psychological stress during TSD. Cardiovascular measure collection [SV, HR, CI, LVET, BP, and SVRI] and neurobehavioral performance testing (including a behavioral attention task and a rating of subjective sleepiness) occurred at six and 11 timepoints, respectively. Individuals with longer pre-study LVET (determined by a median split on pre-study LVET) tended to have poorer performance during TSD and stress. Resilient and vulnerable groups (determined by a median split on average TSD performance) showed significantly different profiles of SV, HR, CI, and LVET. Importantly, LVET at pre-study, but not other hemodynamic measures, reliably differentiated neurobehavioral performance during TSD and stress, and therefore may be a biomarker. Future studies should investigate whether the non-invasive marker, LVET, determines risk for adverse health outcomes.

4.
Aerosp Med Hum Perform ; 89(1): 32-40, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233242

RESUMO

BACKGROUND: Back pain is a common complaint during spaceflight that is commonly attributed to intervertebral disc swelling in microgravity. Ultrasound (US) represents the only imaging modality on the International Space Station (ISS) to assess its etiology. The present study investigated: 1) The agreement and correlation of spinal US assessments as compared to results of pre- and postflight MRI studies; and 2) the trend in intervertebral disc characteristics over the course of spaceflight to ISS. METHODS: Seven ISS astronauts underwent pre- and postflight US examinations that included anterior disc height and anterior intervertebral angles with comparison to pre- and postflight MRI results. In-flight US images were analyzed for changes in disc height and angle. Statistical analysis included repeated measures ANOVA with Bonferroni post hoc analysis, Bland-Altman plots, and Pearson correlation. RESULTS: Bland-Altman plots revealed significant disagreement between disc heights and angles for MRI and US measurements while significant Pearson correlations were found in MRI and US measurements for lumbar disc height (r2 = 0.83) and angle (r2 = 0.89), but not for cervical disc height (r2 = 0.26) or angle (r2 = 0.02). Changes in anterior intervertebral disc angle-initially increases followed by decreases-were observed in the lumbar and cervical spine over the course of the long-duration mission. The cervical spine demonstrated a loss of total disc height during in-flight assessments (∼0.5 cm). DISCUSSION: Significant disagreement but significant correlation was noted between US and MRI measurements of disc height and angle. Consistency in imaging modality is important for trending measurements and more research related to US technique is required.Harrison MF, Garcia KM, Sargsyan AE, Ebert D, Riascos-Castaneda RF, Dulchavsky SA. Preflight, in-flight, and postflight imaging of the cervical and lumbar spine in astronauts. Aerosp Med Hum Perform. 2018; 89(1):32-40.


Assuntos
Medicina Aeroespacial , Dor nas Costas/diagnóstico por imagem , Vértebras Cervicais/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Voo Espacial , Adulto , Astronautas , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Ultrassonografia
5.
J Ultrasound Med ; 37(4): 987-999, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28960477

RESUMO

OBJECTIVES: Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. METHODS: Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. RESULTS: Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. CONCLUSIONS: Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight.


Assuntos
Astronautas , Voo Espacial , Doenças da Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem , Ultrassonografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
6.
J Ultrasound ; 18(2): 179-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26191106

RESUMO

BACKGROUND: Point of care ultrasound (POCUS) is a useful diagnostic tool in medicine. POCUS provides an easy and reproducible method of diagnosis where conventional radiologic studies are unavailable. Telemedicine is also a great means of communication between educators and students throughout the world. HYPOTHESIS: Implementing POCUS with didactics and hands-on training, using portable ultrasound devices followed by telecommunication training, will impact the differential diagnosis and patient management in a rural community outside the United States. MATERIALS AND METHODS: This is an observational prospective study implementing POCUS in Las Salinas, a small village in rural western Nicaragua. Ultrasound was used to confirm a diagnosis based on clinical exam, or uncover a new, previously unknown diagnosis. The primary endpoint was a change in patient management. International sonographic instructors conducted didactic and practical training of local practitioners in POCUS, subsequently followed by remote guidance and telecommunication for 3 months. RESULTS: A total of 132 patients underwent ultrasound examination. The most common presentation was for a prenatal exam (23.5 %), followed by abdominal pain (17 %). Of the 132 patients, 69 (52 %) were found to have a new diagnosis. Excluding pregnancy, 67 patients of 101 (66 %) were found to have a new diagnosis. A change in management occurred in a total of 64 (48 %) patients, and 62 (61 %) after excluding pregnancy. CONCLUSION: Implementing POCUS in rural Nicaragua led to a change in management in about half of the patients examined. With the appropriate training of clinicians, POCUS combined with telemedicine can positively impact patient care.

8.
Echocardiography ; 28(5): 491-501, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21535119

RESUMO

OBJECTIVES: A prospective trial of echocardiography was conducted on six crew members onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what is "space normal" echocardiographic data. METHODS: Each crew member operator (n = 6) had 2-hour preflight training. Baseline echocardiographic data were collected 55-167 days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure--114 days [34--190]). On-orbit ultrasound (US) operators used an e-learning system within 24 hours of these sessions. Expert assistance was provided using US video downlink and two-way voice. Testing was repeated 5-16 days after landing. Separate ANOVA was used on each echocardiographic variable (n = 33). Within each ANOVA, three tests were made: (a) effect of mission phase (preflight, in-flight, postflight); (b) effect of echo technician (two technicians independently analyzed the data); (c) interaction between mission phase and technician. RESULTS: Eleven rejections of the null hypothesis (mission phase or technician or both had no effect) were found that could be considered for possible follow up. Of these, eight rejections were for significant technician effects, not space flight. Three rejections of the null hypothesis (aortic valve time velocity integral, mitral E-wave velocity, and heart rate) were attributable to space flight but determine to not be clinically significant. No rejections were due to the interaction between technician and space flight. CONCLUSION: Thus, we found no consistent clinically significant effects of long-duration space flight on echocardiographic variables of the given group of subjects.


Assuntos
Astronautas , Ecocardiografia/métodos , Astronave , Telemedicina/métodos , Feminino , Humanos , Masculino
9.
J Ultrasound Med ; 30(5): 651-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21527613

RESUMO

OBJECTIVES: This study investigated whether it is feasible to use sonography to monitor changes in the optic nerve sheath diameter in a porcine model. METHODS: A fiber-optic intracranial pressure transducer was surgically placed through the frontal sinus directly into the brain parenchyma of adult Yorkshire pigs (n = 5). A second bolt was placed on the contralateral side for intraparenchymal fluid infusion. Optic nerve sheath diameter measurements were acquired by each of 2 ultrasound operators around the leading edge of the nerve, 3 to 5 mm distal from the origin of the optic nerve. To induce a change in diameter, intracranial pressure was manipulated by injecting normal saline into the intraparenchymal infusion catheter located in the symmetric contralateral position as the pressure-monitoring probe. RESULTS: Data from 1 pig were unusable because of a cerebrospinal fluid leak into the sinus and orbital fissure. Saline aliquots of 1 to 10 mL were able to generate intracranial pressures typically starting from 10 to 15 mm Hg and increasing to 75 to 90 mm Hg, which eventually evoked a Cushing response. Fluid injection was controlled to increase pressures by 60 mm Hg over a 15- to 20-minute period. Regression analysis of all animals showed that the optic nerve sheath diameter increased by 0.0034 mm/mm Hg of intracranial pressure; however, this slope ranged from 0.0025 to 0.0046, depending on the animal measured. There was no discernible effect of the ultrasound operator on the slope; however, measurements made by 1 operator were consistently higher than the others by about 8% of the overall diameter range. CONCLUSIONS: These results suggest that the use of the optic nerve sheath diameter to noninvasively confirm acute changes in intracranial pressure over 1 hour is feasible in a porcine model. We recommend that this method be validated in humans using direct intracranial pressure measurement where possible to confirm it as a screening tool for acute and chronically increased diameters secondary to elevated pressure in clinical settings.


Assuntos
Modelos Animais de Doenças , Interpretação de Imagem Assistida por Computador/métodos , Hipertensão Intracraniana/diagnóstico por imagem , Pressão Intracraniana , Nervo Óptico/diagnóstico por imagem , Animais , Feminino , Humanos , Aumento da Imagem/métodos , Hipertensão Intracraniana/fisiopatologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Ultrassonografia/métodos
11.
Ultrasound Med Biol ; 29(1): 1-12, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12604111

RESUMO

Physiology of the human body in space has been a major concern for space-faring nations since the beginning of the space era. Ultrasound (US) is one of the most cost effective and versatile forms of medical imaging. As such, its use in characterizing microgravity-induced changes in physiology is being realized. In addition to the use of US in related ground-based studies, equipment has also been modified to fly in space. This involves alteration to handle the stresses of launch and different power and cooling requirements. Study protocols also have been altered to accommodate the microgravity environment. Ultrasound studies to date have shown a pattern of adaptation to microgravity that includes changes in cardiac chamber sizes and vertebral spacing. Ultrasound has been and will continue to be an important component in the investigation of physiological and, possibly, pathologic changes occurring in space or as a result of spaceflight.


Assuntos
Medicina Aeroespacial/métodos , Ultrassonografia/métodos , Descondicionamento Cardiovascular , Doença da Descompressão/diagnóstico por imagem , Ecocardiografia , Desenho de Equipamento , Deslocamentos de Líquidos Corporais , Humanos , Cooperação Internacional , Monitorização Fisiológica , Voo Espacial , Simulação de Ambiente Espacial , Telemedicina , Ultrassonografia/instrumentação , Ausência de Peso
12.
J Cardiovasc Pharmacol ; 41(1): 31-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12500019

RESUMO

Insomnia is a common symptom, not only in the adult population but also in many astronauts. Hypnotics, such as temazepam (a benzodiazepine) and zolpidem (an imidazopyridine), are often taken to relieve insomnia. Temazepam has been shown clinically to have hemodynamic side effects, particularly in the elderly; however, the mechanism is not clear. Zolpidem does not cause hemodynamic side effects. The purpose of this study was to determine whether the use of different hypnotics during spaceflight might contribute significantly to the high incidence of postflight orthostatic hypotension, and to compare the findings in astronauts with clinical research. Astronauts were separated into three groups: control (n = 40), temazepam (15 or 30 mg; n = 9), and zolpidem (5 or 10 mg; n = 8). In this study, temazepam and zolpidem were only taken the night before landing. The systolic and diastolic blood pressures and heart rates of the astronauts were measured during stand tests before spaceflight and on landing day. On landing day, systolic pressure decreased significantly and heart rate increased significantly in the temazepam group, but not in the control group or in the zolpidem group. Temazepam may aggravate orthostatic hypotension after spaceflight when astronauts are hemodynamically compromised. Temazepam should not be the initial choice as a sleeping aid for astronauts. These results in astronauts may help to explain the hemodynamic side effects in the elderly who are also compromised. Zolpidem may be a better choice as a sleeping aid in these populations.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Hipotensão Ortostática/induzido quimicamente , Piridinas/farmacologia , Voo Espacial , Temazepam/efeitos adversos , Adulto , Astronautas , Estudos de Casos e Controles , Eletrocardiografia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Pressorreceptores/efeitos dos fármacos , Zolpidem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA