Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genomics ; 116(4): 110858, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735595

RESUMO

The ever decreasing cost of Next-Generation Sequencing coupled with the emergence of efficient and reproducible analysis pipelines has rendered genomic methods more accessible. However, downstream analyses are basic or missing in most workflows, creating a significant barrier for non-bioinformaticians. To help close this gap, we developed Cactus, an end-to-end pipeline for analyzing ATAC-Seq and mRNA-Seq data, either separately or jointly. Its Nextflow-, container-, and virtual environment-based architecture ensures efficient and reproducible analyses. Cactus preprocesses raw reads, conducts differential analyses between conditions, and performs enrichment analyses in various databases, including DNA-binding motifs, ChIP-Seq binding sites, chromatin states, and ontologies. We demonstrate the utility of Cactus in a multi-modal and multi-species case study as well as by showcasing its unique capabilities as compared to other ATAC-Seq pipelines. In conclusion, Cactus can assist researchers in gaining comprehensive insights from chromatin accessibility and gene expression data in a quick, user-friendly, and reproducible manner.

2.
NAR Genom Bioinform ; 6(2): lqae031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666213

RESUMO

DNA variation analysis has become indispensable in many aspects of modern biomedicine, most prominently in the comparison of normal and tumor samples. Thousands of samples are collected in local sequencing efforts and public databases requiring highly scalable, portable, and automated workflows for streamlined processing. Here, we present nf-core/sarek 3, a well-established, comprehensive variant calling and annotation pipeline for germline and somatic samples. It is suitable for any genome with a known reference. We present a full rewrite of the original pipeline showing a significant reduction of storage requirements by using the CRAM format and runtime by increasing intra-sample parallelization. Both are leading to a 70% cost reduction in commercial clouds enabling users to do large-scale and cross-platform data analysis while keeping costs and CO2 emissions low. The code is available at https://nf-co.re/sarek.

3.
PeerJ ; 9: e10947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777521

RESUMO

The broadening utilisation of ancient DNA to address archaeological, palaeontological, and biological questions is resulting in a rising diversity in the size of laboratories and scale of analyses being performed. In the context of this heterogeneous landscape, we present an advanced, and entirely redesigned and extended version of the EAGER pipeline for the analysis of ancient genomic data. This Nextflow pipeline aims to address three main themes: accessibility and adaptability to different computing configurations, reproducibility to ensure robust analytical standards, and updating the pipeline to the latest routine ancient genomic practices. The new version of EAGER has been developed within the nf-core initiative to ensure high-quality software development and maintenance support; contributing to a long-term life-cycle for the pipeline. nf-core/eager will assist in ensuring that a wider range of ancient DNA analyses can be applied by a diverse range of research groups and fields.

4.
Eur J Cell Biol ; 97(3): 190-203, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29526322

RESUMO

The Na+/Ca2+ exchanger (NCX) is a membrane antiporter that has been identified in the plasma membrane, the inner membrane of the nuclear envelope and in the membrane of the endoplasmic reticulum (ER). In humans, three genes have been identified, encoding unique NCX proteins. Although extensively studied, the NCX's sub-cellular localization and mechanisms regulating the activity of different subtypes are still ambiguous. Here we investigated the subcellular localization of the NCX subtype 3 (NCX3) and its impact on the cell cycle. Two phenotypes, switching from one to the other during the cell cycle, were detected. One phenotype was NCX3 in the plasma membrane during S and M phase, and the other was NCX3 in the ER membrane during resting and interphase. Glycosylation of NCX3 at the N45 site was required for targeting the protein to the plasma membrane, and the N45 site functioned as an on-off switch for the translocation of NCX3 to either the plasma membrane or the membrane of the ER. Introduction of an N-glycosylation deficient NCX3 mutant led to an arrest of cells in the G0/G1 phase of the cell cycle. This was accompanied by accumulation of de-glycosylated NCX3 in the cytosol (that is in the ER), where it transported calcium ions (Ca2+) from the cytosol to the ER. These results, obtained in transfected HEK293T and HeLa and confirmed endogenously in SH-SY5Y cells, suggest that cells can use a dynamic Ca2+ signaling toolkit in which the NCX3 sub-cellular localization changes in synchrony with the cell cycle.


Assuntos
Sinalização do Cálcio/fisiologia , Ciclo Celular/fisiologia , Trocador de Sódio e Cálcio/metabolismo , Glicosilação , Células HEK293 , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA