Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 35(42): 5637-5643, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28886943

RESUMO

Highly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.4.4 represents a genetic cluster within the Asian HPAIV H5 Goose/Guangdong lineage that has transmitted through migratory birds and spread throughout the world. In 2014, clade 2.3.4.4 strains entered the U.S. via the Pacific flyway, reassorted with local strains of the North American lineage, and produced novel HPAIV strains of the H5N1, H5N2, and H5N8 subtypes. By 2015, the H5N2 HPAIVs disseminated eastwards within the continental U.S. and Canada and infected commercial poultry, causing the largest animal health outbreak in recent history in the U.S. The outbreak was controlled by traditional mass depopulation methods, but the outbreak was of such magnitude that it led to the consideration of alternative control measures, including vaccination. In this regard, little information is available on the long-term protection of turkeys vaccinated against avian influenza. In this report, a vaccination study was carried out in turkeys using 3 prime-boost approaches with a combination of 2 different vaccines, an alphavirus-based replicon vaccine and an adjuvanted-inactivated reverse genetics vaccine. Vaccine efficacy was assessed at 6 and 16weeks of age following challenge with a prototypic novel clade 2.3.4.4 H5N2 HPAIV. All three vaccines protocols were protective with significantly reduced virus shedding and mortality after challenge at 6weeks of age. In contrast, significant variations were seen in 16-week old turkeys after challenge: priming with the alphavirus-based replicon followed by boost with the adjuvanted-inactivated vaccine conferred the best protection, whereas the alphavirus-based replicon vaccine given twice provided the least protection. Our study highlights the importance of studying not only different vaccine platforms but also vaccination strategies to maximize protection against HPAIV especially with regards to the longevity of vaccine-induced immune response.


Assuntos
Vírus da Influenza A Subtipo H5N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Doenças das Aves Domésticas/imunologia , Perus/imunologia , Vacinação/veterinária , Animais , Canadá , Surtos de Doenças/prevenção & controle , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/prevenção & controle , Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Estados Unidos , Vacinas de Produtos Inativados/imunologia , Eliminação de Partículas Virais/imunologia
2.
Microb Pathog ; 61-62: 73-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711962

RESUMO

The role of interferon gamma (IFN-γ) expression during Newcastle disease virus (NDV) infection in chickens is unknown. Infection of chickens with highly virulent NDV results in rapid death, which is preceded by increased expression of IFN-γ in target tissues. IFN-γ is a cytokine that has pleiotropic biological effects including intrinsic antiviral activity and immunomodulatory effects that may increase morbidity and mortality during infections. To better understand how IFN-γ contributes to NDV pathogenesis, the coding sequence of the chicken IFN-γ gene was inserted in the genome of the virulent NDV strain ZJ1 (rZJ1-IFNγ), and the effects of high levels of IFN-γ expression during infection were determined in vivo and in vitro. IFN-γ expression did not significantly affect NDV replication in fibroblast or in macrophage cell lines. However, it affected the pathogenesis of rZJ1-IFNγ in vivo. Relative to the virus expressing the green fluorescent protein (rZJ1-GFP) or lacking the IFN-γ insert (rZJ1-rev), expression of IFN-γ by rZJ1-IFNγ produced a marked decrease of pathogenicity in 4-week-old chickens, as evidenced by lack of mortality, decreased disease severity, virus shedding, and antigen distribution. These results suggest that early expression of IFN-γ had a significant protective role against the effects of highly virulent NDV infection in chickens, and further suggests that the level and timing of expression of this cytokine may be critical for the disease outcome. This is the first description of an in vivo attenuation of a highly virulent NDV by avian cytokines, and shows the feasibility to use NDV for cytokine delivery in chicken organs. This approach may facilitate the study of the role of other avian cytokines on the pathogenesis of NDV.


Assuntos
Galinhas/virologia , Interferon gama/metabolismo , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/patogenicidade , Animais , Linhagem Celular , Galinhas/imunologia , Fibroblastos/virologia , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/virologia , Doença de Newcastle/mortalidade , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/imunologia , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA