Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38684165

RESUMO

Objective. This work introduces a novel approach to performing active and passive dosimetry for beta-emitting radionuclides in solution using common dosimeters. The measurements are compared to absorbed dose to water (Dw) estimates from Monte Carlo (MC) simulations. We present a method for obtaining absorbed dose to water, measured with dosimeters, from beta-emitting radiopharmaceutical agents using a custom SPECT/CT compatible phantom for validation of Monte Carlo based absorbed dose to water estimates.Approach. A cylindrical, acrylic SPECT/CT compatible phantom capable of housing an IBA EFD diode, Exradin A20-375 parallel plate ion chamber, unlaminated EBT3 film, and thin TLD100 microcubes was constructed for the purpose of measuring absorbed dose to water from solutions of common beta-emitting radiopharmaceutical therapy agents. The phantom is equipped with removable detector inserts that allow for multiple configurations and is designed to be used for validation of image-based absorbed dose estimates with detector measurements. Two experiments with131I and one experiment with177Lu were conducted over extended measurement intervals with starting activities of approximately 150-350 MBq. Measurement data was compared to Monte Carlo simulations using the egs_chamber user code in EGSnrc 2019.Main results. Agreement withink= 1 uncertainty between measured and MC predictedDwwas observed for all dosimeters, except the A20-375 ion chamber during the second131I experiment. Despite the agreement, the measured values were generally lower than predicted values by 5%-15%. The uncertainties atk = 1 remain large (5%-30% depending on the dosimeter) relative to other forms of radiation therapy.Significance. Despite high uncertainties, the overall agreement between measured and simulated absorbed doses is promising for the use of dosimeter-based RPT measurements in the validation of MC predictedDw.


Assuntos
Partículas beta , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Compostos Radiofarmacêuticos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Radiometria/instrumentação , Partículas beta/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/química , Radioisótopos do Iodo/uso terapêutico , Lutécio/química , Água/química , Radioisótopos
2.
Phys Med Biol ; 68(8)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36944253

RESUMO

Objective.This project aims to provide a novel method for performing dosimetry measurements on TRT radionuclides using a custom-made SPECT/CT compatible phantom, common active and passive detectors, and Monte Carlo simulations. In this work we present a feasibility study using99mTc for a novel approach to obtaining reproducible measurements of absorbed-dose-to-water from radionuclide solutions using active and passive detectors in a custom phantom for the purpose of benchmarking Monte Carlo-based absorbed-dose-to-water estimates.Approach. A cylindrical, acrylic SPECT/CT compatible phantom capable of housing an IBA EFD diode, SNC600c Farmer type ion chamber, and TLD-100 microcubes was designed and built for the purpose of assessing internal absorbed-dose-to-water at various points within a solution of99mTc. The phantom is equipped with removable inserts that allow for numerous detector configurations and is designed to be used for verification of SPECT/CT-based absorbed-dose estimates with traceable detector measurements at multiple locations. Three experiments were conducted with exposure times ranging from 11 to 21 h with starting activities of approximately 10-16 GBq. Measurement data was compared to Monte Carlo simulations using the egs_chamber user code in EGSnrc 2019.Main results. In general, the ionization chamber measurements agreed with the Monte Carlo simulations withink= 1 uncertainty values (±4% and ±7%, respectively). Measurements from the TLDs yielded results withink= 1 agreement of the MC prediction (±6% and ±5%, respectively). Agreement withink= 1 uncertainty (±6% and ±7%, respectively) was obtained for the diode for one of three conducted experiments.Significance. While relatively large uncertainties remain, the agreement between measured and simulated absorbed-doses provides proof of principal that dosimetry of radionuclide solutions with active detectors may be performed using this type of phantom with potential modifications for beta-emitting radionuclides to be introduced in future work.


Assuntos
Dosímetros de Radiação , Água , Estudos de Viabilidade , Radiometria/métodos , Radioisótopos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Método de Monte Carlo , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA