Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(6): 781-799.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267914

RESUMO

Somatic mutations commonly occur in hematopoietic stem cells (HSCs). Some mutant clones outgrow through clonal hematopoiesis (CH) and produce mutated immune progenies shaping host immunity. Individuals with CH are asymptomatic but have an increased risk of developing leukemia, cardiovascular and pulmonary inflammatory diseases, and severe infections. Using genetic engineering of human HSCs (hHSCs) and transplantation in immunodeficient mice, we describe how a commonly mutated gene in CH, TET2, affects human neutrophil development and function. TET2 loss in hHSCs produce a distinct neutrophil heterogeneity in bone marrow and peripheral tissues by increasing the repopulating capacity of neutrophil progenitors and giving rise to low-granule neutrophils. Human neutrophils that inherited TET2 mutations mount exacerbated inflammatory responses and have more condensed chromatin, which correlates with compact neutrophil extracellular trap (NET) production. We expose here physiological abnormalities that may inform future strategies to detect TET2-CH and prevent NET-mediated pathologies associated with CH.


Assuntos
Dioxigenases , Neutrófilos , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas , Células-Tronco Hematopoéticas/fisiologia , Medula Óssea , Hematopoese/genética , Mutação , Proteínas de Ligação a DNA/genética , Dioxigenases/genética
2.
Nat Commun ; 13(1): 2048, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440586

RESUMO

The heterogeneous nature of human CD34+ hematopoietic stem cells (HSCs) has hampered our understanding of the cellular and molecular trajectories that HSCs navigate during lineage commitment. Using various platforms including single cell RNA-sequencing and extensive xenotransplantation, we have uncovered an uncharacterized human CD34+ HSC population. These CD34+EPCR+(CD38/CD45RA)- (simply as EPCR+) HSCs have a high repopulating and self-renewal abilities, reaching a stem cell frequency of ~1 in 3 cells, the highest described to date. Their unique transcriptomic wiring in which many gene modules associated with differentiated cell lineages confers their multilineage lineage output both in vivo and in vitro. At the single cell level, EPCR+ HSCs are the most transcriptomically and functionally homogenous human HSC population defined to date and can also be easily identified in post-natal tissues. Therefore, this EPCR+ population not only offers a high human HSC resolution but also a well-structured human hematopoietic hierarchical organization at the most primitive level.


Assuntos
Células-Tronco Hematopoéticas , Análise de Célula Única , Antígenos CD34 , Moléculas de Adesão Celular , Linhagem da Célula , Receptor de Proteína C Endotelial , Humanos
3.
Nat Commun ; 13(1): 801, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145105

RESUMO

When conditions change, unicellular organisms rewire their metabolism to sustain cell maintenance and cellular growth. Such rewiring may be understood as resource re-allocation under cellular constraints. Eukaryal cells contain metabolically active organelles such as mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular constraints remain to be determined for such cells. Here, we present a comprehensive metabolic model of the yeast cell, based on its full metabolic reaction network extended with protein synthesis and degradation reactions. The model predicts metabolic fluxes and corresponding protein expression by constraining compartment-specific protein pools and maximising growth rate. Comparing model predictions with quantitative experimental data suggests that under glucose limitation, a mitochondrial constraint limits growth at the onset of ethanol formation-known as the Crabtree effect. Under sugar excess, however, a constraint on total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies condition-dependent and compartment-specific constraints that can explain metabolic strategies and protein expression profiles from growth rate optimisation, providing a framework to understand metabolic adaptation in eukaryal cells.


Assuntos
Redes e Vias Metabólicas , Proteoma/metabolismo , Proteômica , Leveduras/genética , Leveduras/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/crescimento & desenvolvimento
4.
Cell Rep ; 35(6): 109119, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979628

RESUMO

The bone-marrow (BM) niche is the spatial environment composed by a network of multiple stromal components regulating adult hematopoiesis. We use multi-omics and computational tools to analyze multiple BM environmental compartments and decipher their mutual interactions in the context of acute myeloid leukemia (AML) xenografts. Under homeostatic conditions, we find a considerable overlap between niche populations identified using current markers. Our analysis defines eight functional clusters of genes informing on the cellular identity and function of the different subpopulations and pointing at specific stromal interrelationships. We describe how these transcriptomic profiles change during human AML development and, by using a proximity-based molecular approach, we identify early disease onset deregulated genes in the mesenchymal compartment. Finally, we analyze the BM proteomic secretome in the presence of AML and integrate it with the transcriptome to predict signaling nodes involved in niche alteration in AML.


Assuntos
Células da Medula Óssea/metabolismo , Leucemia Mieloide Aguda/genética , Proteômica/métodos , Animais , Humanos , Camundongos , Microambiente Tumoral
5.
Stem Cell Reports ; 16(3): 428-436, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33581053

RESUMO

We document here that intensive care COVID-19 patients suffer a profound decline in hemoglobin levels but show an increase of circulating nucleated red cells, suggesting that SARS-CoV-2 infection either directly or indirectly induces stress erythropoiesis. We show that ACE2 expression peaks during erythropoiesis and renders erythroid progenitors vulnerable to infection by SARS-CoV-2. Early erythroid progenitors, defined as CD34-CD117+CD71+CD235a-, show the highest levels of ACE2 and constitute the primary target cell to be infected during erythropoiesis. SARS-CoV-2 causes the expansion of colony formation by erythroid progenitors and can be detected in these cells after 2 weeks of the initial infection. Our findings constitute the first report of SARS-CoV-2 infectivity in erythroid progenitor cells and can contribute to understanding both the clinical symptoms of severe COVID-19 patients and how the virus can spread through the circulation to produce local inflammation in tissues, including the bone marrow.


Assuntos
COVID-19/virologia , Células Precursoras Eritroides/virologia , Eritropoese/fisiologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Linhagem Celular , Chlorocebus aethiops , Células Precursoras Eritroides/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/virologia , Células Vero
6.
Biochem J ; 476(7): 1053-1082, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30885983

RESUMO

Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.


Assuntos
Glicólise , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise/genética , Redes e Vias Metabólicas , Modelos Biológicos , Via de Pentose Fosfato/genética , Mutação Puntual , Proteoma/genética , Proteoma/metabolismo , RNA Polimerase III/química , RNA Polimerase III/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética
7.
BMC Syst Biol ; 9: 35, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26168918

RESUMO

BACKGROUND: Understanding the underlying molecular mechanisms in human diseases is important for diagnosis and treatment of complex conditions and has traditionally been done by establishing associations between disorder-genes and their associated diseases. This kind of network analysis usually includes only the interaction of molecular components and shared genes. The present study offers a network and association analysis under a bioinformatics frame involving the integration of HUGO Gene Nomenclature Committee approved gene symbols, KEGG metabolic pathways and ICD-10-CM codes for the analysis of human diseases based on the level of inclusion and hypergeometric enrichment between genes and metabolic pathways shared by the different human disorders. METHODS: The present study offers the integration of HGNC approved gene symbols, KEGG metabolic pathways andICD-10-CM codes for the analysis of associations based on the level of inclusion and hypergeometricenrichment between genes and metabolic pathways shared by different diseases. RESULTS: 880 unique ICD-10-CM codes were mapped to the 4315 OMIM phenotypes and 3083 genes with phenotype-causing mutation. From this, a total of 705 ICD-10-CM codes were linked to 1587 genes with phenotype-causing mutations and 801 KEGG pathways creating a tripartite network composed by 15,455 code-gene-pathway interactions. These associations were further used for an inclusion analysis between diseases along with gene-disease predictions based on a hypergeometric enrichment methodology. CONCLUSIONS: The results demonstrate that even though a large number of genes and metabolic pathways are shared between diseases of the same categories, inclusion levels between these genes and pathways are directional and independent of the disease classification. However, the gene-disease-pathway associations can be used for prediction of new gene-disease interactions that will be useful in drug discovery and therapeutic applications.


Assuntos
Biologia Computacional/métodos , Doença/genética , Humanos , Redes e Vias Metabólicas
8.
Nucleic Acids Res ; 42(Web Server issue): W175-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792167

RESUMO

Analysis of large data sets using computational and mathematical tools have become a central part of biological sciences. Large amounts of data are being generated each year from different biological research fields leading to a constant development of software and algorithms aimed to deal with the increasing creation of information. The BioMet Toolbox 2.0 integrates a number of functionalities in a user-friendly environment enabling the user to work with biological data in a web interface. The unique and distinguishing feature of the BioMet Toolbox 2.0 is to provide a web user interface to tools for metabolic pathways and omics analysis developed under different platform-dependent environments enabling easy access to these computational tools.


Assuntos
Genômica/métodos , Redes e Vias Metabólicas/genética , Software , Perfilação da Expressão Gênica , Internet , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA