Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(8): 3334-3354, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35212122

RESUMO

In Europe, soybean (Glycine max) used for food and feed has to be imported, causing negative socioeconomic and environmental impacts. To increase the local production, breeding generated varieties that grow in colder climates, but the yield using the commercial inoculants is not satisfactory in Belgium because of variable nodulation efficiencies. To look for indigenous nodulating strains possibly adapted to the local environment, we initiated a nodulation trap by growing early-maturing cultivars under natural and greenhouse conditions in 107 garden soils in Flanders. Nodules occurred in 18 and 21 soils in the garden and greenhouse experiments respectively. By combining 16S rRNA PCR on single isolates with HiSeq 16S metabarcoding on nodules, we found a large bacterial richness and diversity from different soils. Furthermore, using Oxford Nanopore Technologies sequencing of DNA from one nodule, we retrieved the entire genome of a Bradyrhizobium species, not previously isolated, but profusely present in that nodule. These data highlight the need of combining diverse identification techniques to capture the true nodule rhizobial community. Eight selected rhizobial isolates were subdivided by whole-genome analysis in three genera containing six genetically distinct species that, except for two, aligned with known type strains and were all able to nodulate soybean in the laboratory.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Solo , Glycine max/microbiologia , Simbiose/genética
2.
Front Microbiol ; 8: 413, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360897

RESUMO

The Pseudomonas fluorescens complex of species includes plant-associated bacteria with potential biotechnological applications in agriculture and environmental protection. Many of these bacteria can promote plant growth by different means, including modification of plant hormonal balance and biocontrol. The P. fluorescens group is currently divided into eight major subgroups in which these properties and many other ecophysiological traits are phylogenetically distributed. Therefore, a rapid phylogroup assignment for a particular isolate could be useful to simplify the screening of putative inoculants. By using comparative genomics on 71 P. fluorescens genomes, we have identified nine markers which allow classification of any isolate into these eight subgroups, by a presence/absence PCR test. Nine primer pairs were developed for the amplification of these markers. The specificity and sensitivity of these primer pairs were assessed on 28 field isolates, environmental samples from soil and rhizosphere and tested by in silico PCR on 421 genomes. Phylogenomic analysis validated the results: the PCR-based system for classification of P. fluorescens isolates has a 98.34% of accuracy and it could be used as a rapid and simple assay to evaluate the potential of any P. fluorescens complex strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA