Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0294760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011088

RESUMO

Bacterial micro-compartments (BMC) are complex macromolecular assemblies that participate in varied metabolic processes in about 20% of bacterial species. Most of these organisms carry BMC genetic information organized in operons that often include several paralog genes coding for components of the compartment shell. BMC shell constituents can be classified depending on their oligomerization state as hexamers (BMC-H), pentamers (BMC-P) or trimers (BMC-T). Formation of hetero-oligomers combining different protein homologs is theoretically feasible, something that could ultimately modify BMC shell rigidity or permeability, for instance. Despite that, it remains largely unknown whether hetero-oligomerization is a widespread phenomenon. Here, we demonstrated that the tripartite GFP (tGFP) reporter technology is an appropriate tool that might be exploited for such purposes. Thus, after optimizing parameters such as the size of linkers connecting investigated proteins to GFP10 or GFP11 peptides, the type and strength of promoters, or the impact of placing coding cassettes in the same or different plasmids, homo-oligomerization processes could be successfully monitored for any of the three BMC shell classes. Moreover, the screen perfectly reproduced published data on hetero-association between couples of CcmK homologues from Syn. sp. PCC6803, which were obtained following a different approach. This study paves the way for mid/high throughput screens to characterize the extent of hetero-oligomerization occurrence in BMC-possessing bacteria, and most especially in organisms endowed with several BMC types and carrying numerous shell paralogs. On the other hand, our study also unveiled technology limitations deriving from the low solubility of one of the components of this modified split-GFP approach, the GFP1-9.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/genética , Genes Bacterianos
2.
PLoS Comput Biol ; 19(4): e1011038, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018378

RESUMO

Bacterial microcompartments (BMC) are complex macromolecular assemblies that participate in varied chemical processes in about one fourth of bacterial species. BMC-encapsulated enzymatic activities are segregated from other cell contents by means of semipermeable shells, justifying why BMC are viewed as prototype nano-reactors for biotechnological applications. Herein, we undertook a comparative study of bending propensities of BMC hexamers (BMC-H), the most abundant shell constituents. Published data show that some BMC-H, like ß-carboxysomal CcmK, tend to assemble flat whereas other BMC-H often build curved objects. Inspection of available crystal structures presenting BMC-H in tiled arrangements permitted us to identify two major assembly modes with a striking connection with experimental trends. All-atom molecular dynamics (MD) supported that BMC-H bending is triggered robustly only from the arrangement adopted in crystals by BMC-H that experimentally form curved objects, leading to very similar arrangements to those found in structures of recomposed BMC shells. Simulations on triplets of planar-behaving hexamers, which were previously reconfigured to comply with such organization, confirmed that bending propensity is mostly defined by the precise lateral positioning of hexamers, rather than by BMC-H identity. Finally, an interfacial lysine was pinpointed as the most decisive residue in controlling PduA spontaneous curvature. Globally, results presented herein should contribute to improve our understanding of the variable mechanisms of biogenesis characterized for BMC, and of possible strategies to regulate BMC size and shape.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Software , Organelas/química
3.
Front Immunol ; 11: 566710, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162982

RESUMO

Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos CD1/imunologia , Modelos Moleculares , Mycobacterium tuberculosis/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Antígenos CD1/genética , Humanos , Proteínas Recombinantes/imunologia
4.
PLoS One ; 14(10): e0223877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603944

RESUMO

The carboxysome is a bacterial micro-compartment (BMC) subtype that encapsulates enzymatic activities necessary for carbon fixation. Carboxysome shells are composed of a relatively complex cocktail of proteins, their precise number and identity being species dependent. Shell components can be classified in two structural families, the most abundant class associating as hexamers (BMC-H) that are supposed to be major players for regulating shell permeability. Up to recently, these proteins were proposed to associate as homo-oligomers. Genomic data, however, demonstrated the existence of paralogs coding for multiple shell subunits. Here, we studied cross-association compatibilities among BMC-H CcmK proteins of Synechocystis sp. PCC6803. Co-expression in Escherichia coli proved a consistent formation of hetero-hexamers combining CcmK1 and CcmK2 or, remarkably, CcmK3 and CcmK4 subunits. Unlike CcmK1/K2 hetero-hexamers, the stoichiometry of incorporation of CcmK3 in associations with CcmK4 was low. Cross-interactions implicating other combinations were weak, highlighting a structural segregation of the two groups that could relate to gene organization. Sequence analysis and structural models permitted the localization of interactions that would favor formation of CcmK3/K4 hetero-hexamers. The crystallization of these CcmK3/K4 associations conducted to the elucidation of a structure corresponding to the CcmK4 homo-hexamer. Yet, subunit exchange could not be demonstrated in vitro. Biophysical measurements showed that hetero-hexamers are thermally less stable than homo-hexamers, and impeded in forming larger assemblies. These novel findings are discussed within the context of reported data to propose a functional scenario in which minor CcmK3/K4 incorporation in shells would introduce sufficient local disorder as to allow shell remodeling necessary to adapt rapidly to environmental changes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexos Multiproteicos/química , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Ligação Proteica , Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Synechocystis/genética , Termodinâmica
5.
Metab Eng Commun ; 8: e00086, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30723675

RESUMO

Spatial clustering of enzymes has proven an elegant approach to optimize metabolite transfer between enzymes in synthetic metabolic pathways. Among the multiple methods used to promote colocalisation, enzyme fusion is probably the simplest. Inspired by natural systems, we have explored the metabolic consequences of spatial reorganizations of the catalytic domains of Xanthophyllomyces dendrorhous carotenoid enzymes produced in Saccharomyces cerevisiae. Synthetic genes encoding bidomain enzymes composed of CrtI and CrtB domains from the natural CrtYB fusion were connected in the two possible orientations, using natural and synthetic linkers. A tridomain enzyme (CrtB, CrtI, CrtY) harboring the full ß-carotene producing pathway was also constructed. Our results demonstrate that domain order and linker properties considerably impact both the expression and/or stability of the constructed proteins and the functionality of the catalytic domains, all concurring to either diminish or boost specific enzymatic steps of the metabolic pathway. Remarkably, the yield of ß-carotene production doubled with the tridomain fusion while precursor accumulation decreased, leading to an improvement of the pathway efficiency, when compared to the natural system. Our data strengthen the idea that fusion of enzymatic domains is an appropriate technique not only to achieve spatial confinement and enhance the metabolic flux but also to produce molecules not easily attainable with natural enzymatic configurations, even with membrane bound enzymes.

6.
Tuberculosis (Edinb) ; 114: 9-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711162

RESUMO

Tuberculosis (TB) is the main cause of mortality among all infectious diseases. The presentation of lipids by CD1b molecules and the interactions of the CD1b-lipid complexes with the immune receptors are important for the understanding of the immune response to Mycobacterium tuberculosis (Mtb), and to develop TB control methods. A specific domain antibody (dAbk11) recognizing the complex of CD1b with Mtb sulphoglycolipid (Ac2SGL) had been previously developed. In order to study the interactions of dAbk11 with Ac2SGL:CD1b, the conformation of Ac2SGL within CD1b was first modelled. The orientation of dAbκ11 with Ac2SGL:CD1b was then predicted by a docking experiment and the complex was sampled using molecular dynamics simulation. Data showed that dAbκ11 Tyr32 OH plays a decisive role in interacting with Ac2SGL alkyl tail HO17. The binding free energy calculation showed that Ac2SGL establish strong hydrophobic interactions with dAbκ11. The model also predicted a higher affinity for the natural sulfoglycolipid (Ac2SGL) than the synthetic analogue (SGL12), which was supported by the ELISA data. These results shed light on the likely mechanism of interactions between Ac2SGL:CD1b and dAbκ11, thus making possible to envision the strategies for dAbκ11 optimization for possible future applications.


Assuntos
Antígenos CD1/imunologia , Tuberculose/imunologia , Anticorpos Antibacterianos/imunologia , Apresentação de Antígeno/imunologia , Glicolipídeos/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Mycobacterium tuberculosis/imunologia
7.
PLoS One ; 12(9): e0185109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934279

RESUMO

CcmK proteins are major constituents of icosahedral shells of ß-carboxysomes, a bacterial microcompartment that plays a key role for CO2 fixation in nature. Supported by the characterization of bidimensional (2D) layers of packed CcmK hexamers in crystal and electron microscopy structures, CcmK are assumed to be the major components of icosahedral flat facets. Here, we reassessed the validity of this model by studying CcmK isoforms from Synechocystis sp. PCC6803. Native mass spectrometry studies confirmed that CcmK are hexamers in solution. Interestingly, potential pre-assembled intermediates were also detected with CcmK2. Atomic-force microscopy (AFM) imaging under quasi-physiological conditions confirmed the formation of canonical flat sheets with CcmK4. Conversely, CcmK2 formed both canonical and striped-patterned patches, while CcmK1 assembled into remarkable supra-hexameric curved honeycomb-like mosaics. Mutational studies ascribed the propensity of CcmK1 to form round assemblies to a combination of two features shared by at least one CcmK isoform in most ß-cyanobacteria: a displacement of an α helical portion towards the hexamer edge, where a potential phosphate binding funnel forms between packed hexamers, and the presence of a short C-terminal extension in CcmK1. All-atom molecular dynamics supported a contribution of phosphate molecules sandwiched between hexamers to bend CcmK1 assemblies. Formation of supra-hexameric curved structures could be reproduced in coarse-grained simulations, provided that adhesion forces to the support were weak. Apart from uncovering unprecedented CcmK self-assembly features, our data suggest the possibility that transitions between curved and flat assemblies, following cargo maturation, could be important for the biogenesis of ß-carboxysomes, possibly also of other BMC.


Assuntos
Proteínas de Bactérias/metabolismo , Silicatos de Alumínio/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromatografia em Gel , Isomerismo , Espectrometria de Massas , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Mutação , Fosfatos/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Soluções , Solventes/química , Synechocystis
8.
J Biol Chem ; 287(37): 31494-502, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22782895

RESUMO

Lipids are important antigens that induce T cell-mediated specific immune responses. They are presented to T lymphocytes by a specific class of MHC-I like proteins, termed CD1. The majority of the described CD1-presented mycobacterial antigens are presented by the CD1b isoform. We previously demonstrated that the stimulation of CD1b-restricted T cells by the hexamannosylated phosphatidyl-myo-inositol (PIM(6)), a family of mycobacterial antigens, requires a prior partial digestion of the antigen oligomannoside moiety by α-mannosidase and that CD1e is an accessory protein absolutely required for the generation of the lipid immunogenic form. Here, we show that CD1e behaves as a lipid transfer protein influencing lipid immunoediting and membrane transfer of PIM lipids. CD1e selectively assists the α-mannosidase-dependent digestion of PIM(6) species according to their degree of acylation. Moreover, CD1e transfers only diacylated PIM from donor to acceptor liposomes and also from membranes to CD1b. This study provides new insight into the molecular mechanisms by which CD1e contributes to lipid immunoediting and CD1-restricted presentation to T cells.


Assuntos
Apresentação de Antígeno/fisiologia , Antígenos de Bactérias/imunologia , Antígenos CD1/imunologia , Glicolipídeos/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antígenos CD1/genética , Antígenos CD1/metabolismo , Linhagem Celular , Glicolipídeos/genética , Glicolipídeos/metabolismo , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Linfócitos T/metabolismo , alfa-Manosidase/química
9.
Proc Natl Acad Sci U S A ; 108(43): 17755-60, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22006319

RESUMO

The mechanisms permitting nonpolymorphic CD1 molecules to present lipid antigens that differ considerably in polar head and aliphatic tails remain elusive. It is also unclear why hydrophobic motifs in the aliphatic tails of some antigens, which presumably embed inside CD1 pockets, contribute to determinants for T-cell recognition. The 1.9-Å crystal structure of an active complex of CD1b and a mycobacterial diacylsulfoglycolipid presented here provides some clues. Upon antigen binding, endogenous spacers of CD1b, which consist of a mixture of diradylglycerols, moved considerably within the lipid-binding groove. Spacer displacement was accompanied by F' pocket closure and an extensive rearrangement of residues exposed to T-cell receptors. Such structural reorganization resulted in reduction of the A' pocket capacity and led to incomplete embedding of the methyl-ramified portion of the phthioceranoyl chain of the antigen, explaining why such hydrophobic motifs are critical for T-cell receptor recognition. Mutagenesis experiments supported the functional importance of the observed structural alterations for T-cell stimulation. Overall, our data delineate a complex molecular mechanism combining spacer repositioning and ligand-induced conformational changes that, together with pocket intricacy, endows CD1b with the required molecular plasticity to present a broad range of structurally diverse antigens.


Assuntos
Antígenos CD1/química , Glicolipídeos/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Conformação Proteica , Antígenos CD1/metabolismo , Cromatografia em Camada Fina , Cristalografia por Raios X , Análise de Fourier , Glicolipídeos/metabolismo , Humanos , Mutagênese , Espectrometria de Massas por Ionização por Electrospray
10.
Proc Natl Acad Sci U S A ; 108(34): 14228-33, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21844346

RESUMO

CD1e is a member of the CD1 family that participates in lipid antigen presentation without interacting with the T-cell receptor. It binds lipids in lysosomes and facilitates processing of complex glycolipids, thus promoting editing of lipid antigens. We find that CD1e may positively or negatively affect lipid presentation by CD1b, CD1c, and CD1d. This effect is caused by the capacity of CD1e to facilitate rapid formation of CD1-lipid complexes, as shown for CD1d, and also to accelerate their turnover. Similar results were obtained with antigen-presenting cells from CD1e transgenic mice in which lipid complexes are assembled more efficiently and show faster turnover than in WT antigen-presenting cells. These effects maximize and temporally narrow CD1-restricted responses, as shown by reactivity to Sphingomonas paucimobilis-derived lipid antigens. CD1e is therefore an important modulator of both group 1 and group 2 CD1-restricted responses influencing the lipid antigen availability as well as the generation and persistence of CD1-lipid complexes.


Assuntos
Antígenos CD1/imunologia , Imunidade/imunologia , Lipídeos/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Clonais , Células Dendríticas/imunologia , Glicolipídeos/imunologia , Glicoproteínas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Humanos , Cinética , Camundongos , Camundongos Transgênicos , Células T Matadoras Naturais/imunologia , Sphingomonas/imunologia
11.
Proc Natl Acad Sci U S A ; 108(32): 13230-5, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788486

RESUMO

CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b-antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded.


Assuntos
Antígenos CD1/química , Antígenos CD1/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Acilação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
FEBS J ; 278(12): 2022-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21481186

RESUMO

The plasma membrane proteins CD1a, CD1b and CD1c are expressed by human dendritic cells, the professional antigen-presenting cells of the immune system, and present lipid antigens to T lymphocytes. CD1e belongs to the same family of molecules, but accumulates as a membrane-associated form in the Golgi compartments of immature dendritic cells and as a soluble cleaved form in the lysosomes of mature dendritic cells. In lysosomes, the N-terminal propeptide of CD1e is also cleaved, but the functional consequences of this step are unknown. Here, we investigated how the pH changes encountered during transport to lysosomes affect the structure of CD1e and its ligand-binding properties. Circular dichroism studies demonstrated that the secondary and tertiary structures of recombinant CD1e were barely altered by pH changes. Nevertheless, at acidic pH, guanidium chloride-induced unfolding of CD1e molecules required lower concentrations of denaturing agent. The nonfunctional L194P allelic variant was found to be structurally less stable at acidic pH than the functional forms, providing an explanation for the lack of its detection in lysosomes. The number of water-exposed hydrophobic patches that bind 8-anilinonaphthalene-1-sulfonate was higher in acidic conditions, especially for the L194P variant. CD1e molecules interacted with lipid surfaces enriched in anionic lipids, such as bis(monoacylglycero)phosphate, a late endosomal/lysosomal lipid, especially at acidic pH, or when the propeptide was present. Altogether, these data indicate that, in the late endosomes/lysosomes of DCs, the acid pH promotes the binding of lipid antigens to CD1e through increased hydrophobic and ionic interactions.


Assuntos
Antígenos CD1/química , Antígenos CD1/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endossomos/metabolismo , Substituição de Aminoácidos , Antígenos CD1/genética , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Ligantes , Metabolismo dos Lipídeos , Lipossomos/metabolismo , Desnaturação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
EMBO J ; 25(15): 3684-92, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16874306

RESUMO

CD1 proteins present lipid antigens to T cells. The antigens are acquired in the endosomal compartments. This raises the question of how the large hydrophobic CD1 pockets are preserved between the moment of biosynthesis in the endoplasmic reticulum and arrival to the endosomes. To address this issue, the natural ligands associated with a soluble form of human CD1b have been investigated. Using isoelectric focusing, native mass spectrometry and resolving the crystal structure at 1.8 A resolution, we found that human CD1b is simultaneously associated with endogenous phosphatidylcholine (PC) and a 41-44 carbon atoms-long spacer molecule. The two lipids appear to work in concert to stabilize the CD1b groove, their combined size slightly exceeding the maximal groove capacity. We propose that the spacer serves to prevent binding of ligands with long lipid tails, whereas short-chain lipids might still displace the PC, which is exposed at the groove entrance. The data presented herein explain how the CD1b groove is preserved, and provide a rationale for the in vivo antigen-binding properties of CD1b.


Assuntos
Antígenos CD1/química , Fosfatidilcolinas/química , Antígenos CD1/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Focalização Isoelétrica , Ligantes , Espectrometria de Massas , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
14.
Biochemistry ; 43(41): 13037-45, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15476397

RESUMO

Dihydroxyacetone (Dha) kinases are a sequence-conserved family of enzymes, which utilize two different phosphoryldonors, ATP in animals, plants, and some bacteria, and a multiphosphoprotein of the phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) in most bacteria. Here, we compare the PTS-dependent kinase of Escherichia coli and the ATP-dependent kinase of Citrobacter freundii. They display 30% sequence identity. The binding constants of the E. coli kinase for eleven short-chain carbonyl compounds were determined by acetone precipitation of the enzyme-substrate complexes. They are 3.4 microM for Dha, 780 microM for Dha-phosphate (DhaP), 50 microM for D,L-glyceraldehyde (GA), and 90 microM for D,L-glyceraldehyde-3-phosphate. The k(cat) for Dha of the PTS-dependent kinase is 290 min(-1), and that of the ATP-dependent kinase is 1050 min(-1). The Km for Dha of both kinases is <6 microM. The X-ray structures of the enzyme-GA and the enzyme-DhaP complex show that substrates as well as products are bound in hemiaminal linkage to an active-site histidine. Quantum-mechanical calculations offer no indication for activation of the reacting hydroxyl group by the formation of the hemiaminal. However, the formation of the hemiaminal bond allows selection for short-chain carbonyl compounds and discrimination against structurally similar polyols. The Dha kinase remains fully active in the presence of 2 M glycerol, and phosphorylates trace impurities of carbonyl compounds present in glycerol.


Assuntos
Acetona/análogos & derivados , Trifosfato de Adenosina/química , Citrobacter freundii/enzimologia , Proteínas de Escherichia coli/química , Fosfoenolpiruvato/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Acetona/química , Aminas/química , Ligação Competitiva , Cristalografia por Raios X , Fosfato de Di-Hidroxiacetona/química , Inibidores Enzimáticos/química , Gliceraldeído/química , Cinética , Ligação Proteica , Teoria Quântica , Especificidade por Substrato
15.
J Biol Chem ; 278(48): 48236-44, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-12966101

RESUMO

Dihydroxyacetone kinases are a sequence-conserved family of enzymes, which utilize two different phosphoryldonors, ATP in animals, plants and some bacteria, and a multiphosphoprotein of the phosphoenolpyruvate carbohydrate phosphotransferase system in bacteria. Here we report the 2.5-A crystal structure of the homodimeric Citrobacter freundii dihydroxyacetone kinase complex with an ATP analogue and dihydroxyacetone. The N-terminal domain consists of two alpha/beta-folds with a molecule of dihydroxyacetone covalently bound in hemiaminal linkage to the N epsilon 2 of His-220. The C-terminal domain consists of a regular eight-helix alpha-barrel. The eight helices form a deep pocket, which includes a tightly bound phospholipid. Only the lipid headgroup protrudes from the surface. The nucleotide is bound on the top of the barrel across from the entrance to the lipid pocket. The phosphate groups are coordinated by two Mg2+ ions to gamma-carboxyl groups of aspartyl residues. The ATP binding site does not contain positively charged or aromatic groups. Paralogues of dihydroxyacetone kinase also occur in association with transcription regulators and proteins of unknown function pointing to biological roles beyond triose metabolism.


Assuntos
Citrobacter freundii/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Ácido Aspártico/química , Sítios de Ligação , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Íons , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfolipídeos/metabolismo , Filogenia , Plasmídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
16.
Biochemistry ; 41(31): 10077-86, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146972

RESUMO

The glucose (EII(Glc)) and mannose (EII(Man)) permeases of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) of Escherichia coli belong to structurally different families of PTS transporters. The sugar recognition mechanism of the two transporters is compared using as inhibitors and pseudosubstrates all possible monodeoxy analogues, monodeoxyfluoro analogues, and epimers of D-glucose. The analogues were tested as phosphoryl acceptors in vitro and as uptake inhibitors with intact cells. Both EII have a high K(m) of phosphorylation for glucose modified at C-4 and C-6, and these analogues also are weak inhibitors of uptake. Conversely, modifications at C-1 (and also at C-2 with EII(Man)) were well tolerated. OH-3 is proposed to interact with hydrogen bond donors on EII(Glc) and EII(Man), since only substitution by fluorine was tolerated. Glucose-6-aldehydes, which exist as gem-diols in aqueous solution, are potent and highly selective inhibitors of "nonvectorial" phosphorylation by EII(Glc) (K(I) 3-250 microM). These aldehydes are comparatively weak inhibitors of transport by EII(Glc) and of phosphorylation and transport by EII(Man). Both transporters display biphasic kinetics (with glucose and some analogues) but simple Michaelis-Menten kinetics with 3-fluoroglucose (and other analogues). Kinetic simulations of the phosphorylation activities measured with different substrates and inhibitors indicate that two independent activities are present at the cytoplasmic side of the transporter. A working model that accounts for the kinetic data is presented.


Assuntos
Escherichia coli/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Aldeídos/metabolismo , Cinética , Ressonância Magnética Nuclear Biomolecular , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/antagonistas & inibidores , Fosforilação , Espectrometria de Massas por Ionização por Electrospray
17.
J Org Chem ; 61(20): 6980-6986, 1996 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-11667596

RESUMO

A general procedure to obtain the 3'-aminoxylonucleosides 13a,b and 17a,b is presented. The synthetic scheme is based on the 5' directed intramolecular nucleophilic substitution at the 3'-activated position of the nucleoside. The approach of the incoming group to this position takes place regio- and stereoselectively from the most hindered face of the nucleoside. The methodology presented is applicable to ribonucleosides and 2'-deoxyribonucleosides, regardless of their nitrogenated base.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA