Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Epilepsy Behav ; 154: 109735, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522192

RESUMO

Seizure events can manifest as transient disruptions in the control of movements which may be organized in distinct behavioral sequences, accompanied or not by other observable features such as altered facial expressions. The analysis of these clinical signs, referred to as semiology, is subject to observer variations when specialists evaluate video-recorded events in the clinical setting. To enhance the accuracy and consistency of evaluations, computer-aided video analysis of seizures has emerged as a natural avenue. In the field of medical applications, deep learning and computer vision approaches have driven substantial advancements. Historically, these approaches have been used for disease detection, classification, and prediction using diagnostic data; however, there has been limited exploration of their application in evaluating video-based motion detection in the clinical epileptology setting. While vision-based technologies do not aim to replace clinical expertise, they can significantly contribute to medical decision-making and patient care by providing quantitative evidence and decision support. Behavior monitoring tools offer several advantages such as providing objective information, detecting challenging-to-observe events, reducing documentation efforts, and extending assessment capabilities to areas with limited expertise. The main applications of these could be (1) improved seizure detection methods; (2) refined semiology analysis for predicting seizure type and cerebral localization. In this paper, we detail the foundation technologies used in vision-based systems in the analysis of seizure videos, highlighting their success in semiology detection and analysis, focusing on work published in the last 7 years. We systematically present these methods and indicate how the adoption of deep learning for the analysis of video recordings of seizures could be approached. Additionally, we illustrate how existing technologies can be interconnected through an integrated system for video-based semiology analysis. Each module can be customized and improved by adapting more accurate and robust deep learning approaches as these evolve. Finally, we discuss challenges and research directions for future studies.


Assuntos
Aprendizado Profundo , Convulsões , Gravação em Vídeo , Humanos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Gravação em Vídeo/métodos , Eletroencefalografia/métodos
2.
IBRO Neurosci Rep ; 15: 68-76, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37457787

RESUMO

About 1-2% of people worldwide suffer from epilepsy, which is characterized by unpredictable and intermittent seizure occurrence. Despite the fact that the exact origin of temporal lobe epilepsy is frequently unknown, it is frequently linked to an early triggering insult like brain damage, tumors, or Status Epilepticus (SE). We used an experimental approach consisting of electrical stimulation of the amygdaloid complex to induce two behaviorally and structurally distinct SE states: Type I (fully convulsive), with more severe seizure behaviors and more extensive brain damage, and Type II (partial convulsive), with less severe seizure behaviors and brain damage. Our goal was to better understand how the various types of SE impact the hippocampus leading to the development of epilepsy. Despite clear variations between the two behaviors in terms of neurodegeneration, study of neurogenesis revealed a comparable rise in the number of Ki-67 + cells and an increase in Doublecortin (DCX) in both kinds of SE.

3.
J Alzheimers Dis ; 94(3): 1179-1196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393501

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative and progressive disorder with no cure and constant failures in clinical trials. The main AD hallmarks are amyloid-ß (Aß) plaques, neurofibrillary tangles, and neurodegeneration. However, many other events have been implicated in AD pathogenesis. Epilepsy is a common comorbidity of AD and there is important evidence indicating a bidirectional link between these two disorders. Some studies suggest that disturbed insulin signaling might play an important role in this connection. OBJECTIVE: To understand the effects of neuronal insulin resistance in the AD-epilepsy link. METHODS: We submitted the streptozotocin (STZ) induced rat AD Model (icv-STZ AD) to an acute acoustic stimulus (AS), a known trigger of seizures. We also assessed animals' performance in the memory test, the Morris water maze and the neuronal activity (c-Fos protein) induced by a single audiogenic seizure in regions that express high levels of insulin receptors. RESULTS: We identified significant memory impairment and seizures in 71.43% of all icv-STZ/AS rats, in contrast to 22.22% of the vehicle group. After seizures, icv-STZ/AS rats presented higher number of c-Fos immunopositive cells in hippocampal, cortical, and hypothalamic regions. CONCLUSION: STZ may facilitate seizure generation and propagation by impairment of neuronal function, especially in regions that express high levels of insulin receptors. The data presented here indicate that the icv-STZ AD model might have implications not only for AD, but also for epilepsy. Finally, impaired insulin signaling might be one of the mechanisms by which AD presents a bidirectional connection to epilepsy.


Assuntos
Doença de Alzheimer , Ratos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Estreptozocina/toxicidade , Receptor de Insulina/metabolismo , Insulina/metabolismo , Convulsões/induzido quimicamente , Modelos Animais de Doenças , Aprendizagem em Labirinto
4.
Behav Brain Res ; 452: 114588, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37474023

RESUMO

Chronic neuropathic pain (CNP) is a vast world health problem often associated with the somatosensory domain. This conceptualization is problematic because, unlike most other sensations that are usually affectively neutral and may present emotional, affective, and cognitive impairments. Neuronal circuits that modulate pain can increase or decrease painful sensitivity based on several factors, including context and expectation. The objective of this study was to evaluate whether subchronic treatment with Cannabidiol (CBD; 0.3, 3, and 10 mg/kg intraperitoneal route - i.p., once a day for 3 days) could promote pain-conditioned reversal, in the conditioned place preference (CPP) test, in male Wistar rats submitted to chronic constriction injury (CCI) of the sciatic nerve. Then, we evaluated the expression of astrocytes and microglia in animals treated with CBD through the immunofluorescence technique. Our results demonstrated that CBD promoted the reversal of CPP at 3 and 10 mg/kg. In CCI animals, CBD was able to attenuate the increase in neuronal hyperactivity, measured by FosB protein expression, in the regions of the corticolimbic circuit: anterior cingulate cortex (ACC), complex basolateral amygdala (BLA), granular layer of the dentate gyrus (GrDG), and dorsal hippocampus (DH) - adjacent to subiculum (CA1). CBD also prevented the increased expression of GFAP and IBA-1 in CCI animals. We concluded that CBD effects on CNP are linked to the modulation of the aversive component of pain. These effects decrease chronic neuronal activation and inflammatory markers in regions of the corticolimbic circuit.


Assuntos
Canabidiol , Neuralgia , Ratos , Animais , Masculino , Ratos Wistar , Canabidiol/farmacologia , Aprendizagem da Esquiva , Doenças Neuroinflamatórias , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo
5.
Neurosci Biobehav Rev ; 152: 105326, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37479008

RESUMO

Since glucose reuptake by neurons is mostly independent of insulin, it has been an intriguing question whether insulin has or not any roles in the brain. Consequently, the identification of insulin receptors in the central nervous system has fueled investigations of insulin functions in the brain. It is also already known that insulin can influence glucose reuptake by neurons, mostly during activities that have the highest energy demand. The identification of high density of insulin receptors in the hippocampus also suggests that insulin may present important roles related to memory. In this context, studies have reported worse performance in cognitive tests among diabetic patients. In addition, alterations in the regulation of central insulin pathways have been observed in the brains of Alzheimer's disease (AD) patients. In fact, some authors have proposed AD as a third type of diabetes and recently, our group proposed insulin resistance as a common link between different AD hypotheses. Therefore, in the present narrative review, we intend to revise and gather the evidence of disturbed insulin signaling in experimental animal models of AD.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Animais , Insulina/metabolismo , Receptor de Insulina/metabolismo , Modelos Animais , Encéfalo , Glucose/metabolismo , Modelos Animais de Doenças
6.
Epilepsy Behav ; 141: 109160, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907082

RESUMO

Anxiety and pain hypersensitivity are neurobehavioral comorbidities commonly reported by patients with epilepsies, and preclinical models are suitable to investigate the neurobiology of behavioral and neuropathological alterations associated with these epilepsy-related comorbidities. This work aimed to characterize endogenous alterations in nociceptive threshold and anxiety-like behaviors in the Wistar Audiogenic Rat (WAR) model of genetic epilepsy. We also assessed the effects of acute and chronic seizures on anxiety and nociception. WARs from acute and chronic seizure protocols were divided into two groups to assess short- and long-term changes in anxiety (1 day or 15 days after seizures, respectively). To assess anxiety-like behaviors, the laboratory animals were submitted to the open field, light-dark box, and elevated plus maze tests. The von Frey, acetone, and hot plate tests were used to measure the endogenous nociception in seizure-free WARs, and postictal antinociception was recorded at 10, 30, 60, 120, 180 min, and 24 h after seizures. Seizure-free WARs presented increased anxiety-like behaviors and pain hypersensitivity, displaying mechanical and thermal allodynia (to heat and cold stimuli) in comparison to nonepileptic Wistar rats. Potent postictal antinociception that persisted for 120 to 180 min was detected after acute and chronic seizures. Additionally, acute and chronic seizures have magnified the expression of anxiety-like behaviors when assessed at 1 day and 15 days after seizures. Behavioral analysis indicated more severe and persistent anxiogenic-like alterations in WARs submitted to acute seizures. Therefore, WARs presented pain hypersensitivity and increased anxiety-like behaviors endogenously associated with genetic epilepsy. Acute and chronic seizures induced postictal antinociception in response to mechanical and thermal stimuli and increased anxiety-like behaviors when assessed 1 day and 15 days later. These findings support the presence of neurobehavioral alterations in subjects with epilepsy and shed light on the use of genetic models to characterize neuropathological and behavioral alterations associated with epilepsy.


Assuntos
Epilepsia , Nociceptividade , Ratos , Animais , Ratos Wistar , Convulsões/complicações , Convulsões/genética , Convulsões/patologia , Ansiedade/etiologia , Dor , Modelos Animais de Doenças
7.
Neuropharmacology ; 226: 109385, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603798

RESUMO

Studies investigated how stressful experiences modulate physiological and behavioral responses and the consequences of stress-induced corticosterone release in anxiety-like behavior. Adolescence is crucial to brain maturation, and several neurobiological changes in this period lead individuals to increased susceptibility or resilience to aversive situations. Despite the effects of stress in adults, information about adolescents' responses to acute stress is lacking. We aimed to understand how adolescence affects acute stress responses. Male adolescent rats (30 days old) were 2 h restrained, and anxiety-like behaviors were measured immediately or 10 days after stress in the elevated plus-maze (EPM) and the light-dark box (LDB) tests. To verify the importance of CORT modulation in stress-induced anxiety, another group of rats was treated, 30 min before restraint, with metyrapone to blunt the stress-induced CORT peak and tested immediately after stress. To show that stress effects on behavior were age-dependent, another set of rats was tested in two different periods - early adolescence (30 days old) and mid-adolescence (40 days old) and were treated or not with metyrapone before the stress session and tested immediately or ten days later in the LDB test. Only early adolescent male rats were resilient to delayed anxiety-like behavior in EPM and LDB tests. Metyrapone treatment increased the rats' exploration immediately and ten days after stress. These data suggest a specific age at which adolescent rats are resilient to the delayed effects of acute restraint stress and that the metyrapone treatment has long-term behavioral consequences.


Assuntos
Glucocorticoides , Metirapona , Ratos , Animais , Masculino , Glucocorticoides/farmacologia , Metirapona/farmacologia , Ansiedade/induzido quimicamente , Transtornos de Ansiedade , Corticosterona/farmacologia , Estresse Psicológico/complicações , Comportamento Animal
8.
J Neurosci Methods ; 384: 109748, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410541

RESUMO

BACKGROUND: Knowledge on the neurobiological systems underlying psychiatric disorders has considerably evolved due to findings on basic research using animal models. Anxiety-like behaviors in rodents are widely explored in neuroethological apparatuses, such as the light-dark box (LDB) test through different protocols, which have been shown to influence the behavioral outcomes and probably the activation of the hypothalamic-pituitary-adrenal (HPA) axis. NEW METHOD: Adult male Wistar rats were submitted to LDB in different room illumination conditions (25/0, 65/0 and/or 330/0 lux), initial positioning in the LDB compartments and previous stressful experience in the Elevated Plus Maze (EPM) or restraint stress (RS). Rats' behavior (exploratory and risk assessment) was registered during a 15 min period, divided into blocks of 5 min RESULTS: Exploration of the lit compartment decreased in higher luminosity condition, as after positioning rats in the dark compartment or previous exposure to the EPM, while low luminosity increased exploration of the LDB. No differences were observed on serum corticosterone in all groups and experimental conditions. COMPARISON WITH EXISTING METHODS: Light intensity and test duration influenced exploration of the LDB jeopardizing the anxiolytic/anxiogenic effects. Low light intensity increased exploration, while high intensity decreased it. These results suggest that 65/0 lux is a neutral condition to investigate possible anxiolytic/anxiogenic effects of drugs and/or exposure to previous aversive stimuli as the EPM. CONCLUSIONS: Different factors impact on exploratory and risk assessment behaviors which may be related to safety maximization behavior. Unraveling how different factors affect behavior may be a crucial step towards understanding its expression and the contributions on advances in the physiopathology 1 and treatment of psychiatric disorders.


Assuntos
Ansiolíticos , Ratos , Animais , Masculino , Ansiolíticos/farmacologia , Ratos Wistar , Comportamento Animal/fisiologia , Ansiedade/tratamento farmacológico , Corticosterona
9.
Int J Neurosci ; 133(5): 523-531, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34082662

RESUMO

The phenomenon of plasticity in the striatum, and its relation with the striatum-nigra neuronal circuit has clinical and neurophysiological relevance to Parkinson and epilepsy. High frequency stimulation (HFS) can induce neural plasticity. Furthermore, it is possible to induce plasticity in the dorsal striatum and this can be modulated by substantia nigra activity. But it has not been shown yet what would be the effects in the striatum-nigra circuit after plasticity induction in striatum with HSF. Literature also misses a detailed description of the way back loop of the circuit: the striatal firing rate after substantia nigrás inhibition. We here conducted: First Experiment, application of HFS in dorsomedial striatum and measure of spontaneous and longlasting behavior expression in the open field three days later; Second, application of single pulses on dorsomedial striatum and measure of the evoked potentials in substantia nigra before and after HFS; Third Experiment: inhibition of substantia nigra and recording of the firing rate of dorsomedial striatum. HFS in dorsomedial striatum caused increased locomotion behaviors, but not classical stereotypy. However, rats had either an increase or decrease in substantia nigrás evoked potentials. Also, substantia nigrás inhibition caused an increase in dorsomedial striatum firing rate. Present data are suggestive of a potential application of HFS in striatum, as an attempt to modulate behavior rigidity and hypokinesia of diseases involving the basal ganglia, especially Parkinson´s Disease.


Assuntos
Epilepsia , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Corpo Estriado , Gânglios da Base , Epilepsia/metabolismo
10.
Pharmacol Rep ; 75(1): 166-176, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36195689

RESUMO

BACKGROUND: Cannabidiol (CBD) has been of rapidly growing interest in the epilepsy research field due to its antiseizure properties in preclinical models and patients with pharmacoresistant epilepsy. However, little is known about CBD effects in genetic models of epilepsies. Here we assessed CBD dose-response effects in the Genetically Epilepsy Prone Rats (GEPR-3) strain, which exhibits two types of epileptic seizures, brainstem-dependent generalized tonic-clonic seizures and limbic seizures. METHODS: GEPR-3 s were submitted to the audiogenic seizure (AGS) protocol. Acute AGS are brainstem-dependent generalized tonic-clonic, while repeated AGS (or audiogenic kindling, AK), an epileptogenic process, leads to increased AGS severity and limbic seizure expression. Therefore, two different dose-response studies were performed, one for generalized tonic-clonic seizures and the other for limbic seizures. CBD time-course effects were assessed 2, 4, and 6 h after drug injection. GEPR-3 s were submitted to within-subject tests, receiving intraperitoneal injections of CBD (1, 10, 50, 100 mg/kg/ml) and vehicle. RESULTS: CBD dose-dependently attenuated generalized tonic-clonic seizures in GEPR-3 s; CBD 50 and 100 mg/kg reduced brainstem-dependent seizure severity and duration. In fully kindled GEPR-3 s, CBD 10 mg/kg reduced limbic seizure severity and suppressed limbic seizure expression in 75% of animals. CONCLUSIONS: CBD was effective against brainstem and limbic seizures in the GEPR-3 s. These results support the use of CBD treatment for epilepsies by adding new information about the pharmacological efficacy of CBD in suppressing inherited seizure susceptibility in the GEPR-3 s.


Assuntos
Canabidiol , Epilepsia Reflexa , Excitação Neurológica , Ratos , Animais , Canabidiol/farmacologia , Convulsões/tratamento farmacológico , Excitação Neurológica/fisiologia , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/genética , Tronco Encefálico , Niacinamida/farmacologia , Estimulação Acústica , Modelos Animais de Doenças
11.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203262

RESUMO

Vagus nerve stimulation (VNS) is an adjuvant neuromodulation therapy for the treatment of refractory epilepsy. However, the mechanisms behind its effectiveness are not fully understood. Our aim was to develop a VNS protocol for the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) in order to evaluate the mechanisms of action of the therapy. The rodents were subject to VNS for 14 days using clinical stimulation parameters by implanting a clinically available neurostimulation device or our own prototype for laboratory animals. The neuroethological assessment of seizures and general behavior were performed before surgery, and after 7, 10, and 14 days of VNS. Moreover, potential side effects were examined. Finally, the expression of 23 inflammatory markers in plasma and the left-brain hemisphere was evaluated. VNS significantly reduced seizure severity in GASH/Sal without side effects. No differences were observed between the neurostimulation devices. GASH/Sal treated with VNS showed statistically significant reduced levels of interleukin IL-1ß, monocyte chemoattractant protein MCP-1, matrix metalloproteinases (MMP-2, MMP-3), and tumor necrosis factor TNF-α in the brain. The described experimental design allows for the study of VNS effects and mechanisms of action using an implantable device. This was achieved in a model of convulsive seizures in which VNS is effective and shows an anti-inflammatory effect.


Assuntos
Epilepsia Reflexa , Estimulação do Nervo Vago , Animais , Cricetinae , Convulsões/terapia , Encéfalo , Terapia Combinada , Interleucina-1beta
12.
Mol Neurobiol ; 59(12): 7354-7369, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36171480

RESUMO

Intrahippocampal pilocarpine microinjection (H-PILO) induces status epilepticus (SE) that can lead to spontaneous recurrent seizures (SRS) and neurodegeneration in rodents. Studies using animal models have indicated that lectins mediate a variety of biological activities with neuronal benefits, especially galectin-1 (GAL-1), which has been identified as an effective neuroprotective compound. GAL-1 is associated with the regulation of cell adhesion, proliferation, programmed cell death, and immune responses, as well as attenuating neuroinflammation. Here, we administrated GAL-1 to Wistar rats and evaluated the severity of the SE, neurodegenerative and inflammatory patterns in the hippocampal formation. Administration of GAL-1 caused a reduction in the number of class 2 and 4 seizures, indicating a decrease in seizure severity. Furthermore, we observed a reduction in inflammation and neurodegeneration 24 h and 15 days after SE. Overall, these results suggest that GAL-1 has a neuroprotective effect in the early stage of epileptogenesis and provides new insights into the roles of exogenous lectins in temporal lobe epilepsy (TLE).


Assuntos
Epilepsia do Lobo Temporal , Fármacos Neuroprotetores , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Galectina 1/farmacologia , Galectina 1/uso terapêutico , Galectina 1/metabolismo , Ratos Wistar , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Pilocarpina , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Convulsões/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças
13.
Neuroscience ; 500: 26-40, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934253

RESUMO

Wistar Audiogenic Rats (WAR) is an inbred rodent strain susceptible to acute auditory stimulation-induced seizures. However, spontaneous epileptic seizures (SES) and their associated electroencephalogram (EEG) abnormalities have not been reported in WAR kindled animals. The same is true for naïve WARs (without sound-induced seizures). An approach to increment epileptogenesis and SES is to use a second insult to be added to the genetic background. Here, we used adult naïve WARs with microgyria induced by neonatal cortical freeze-lesion (FL) to evaluate the occurrence of SES and the modification in cortical oscillation patterns and behavior. The neonatal cortical FL was performed in Wistar and naïve WARs (Wis-FL and WAR-FL). Sham animals were used as controls (Wistar-S and WAR-S). Video-EEG recordings and behavioral tasks were performed during adulthood. Surprisingly, spike-waive discharges (SWD) events associated with behavior arrest were detected in WAR-S rats. Those events increased in duration and number in WAR-FL animals. The EEG quantitative analysis showed decreased power of cortical delta, theta and beta oscillations in WAR-S, decreased power of cortical fast gamma (FG) oscillations in WARs, independent of microgyria, and decreased interhemispheric synchrony for delta and FG with stronger coupling in delta and theta-FG oscillations in FL animals. The WARs, regardless of microgyria, had reduced locomotor activity, but only WAR-FL animals had reduced anxiety-like behavior. Microgyria in naïve WARs intensified SWD events associated with behavior arrest that could reflect absence-like seizures and abnormal cortical oscillations, and reduced anxiety-like behavior indicating that WAR-FL could be a reliable model to study epileptogenesis.


Assuntos
Epilepsia Tipo Ausência , Convulsões , Estimulação Acústica , Animais , Ansiedade , Modelos Animais de Doenças , Eletroencefalografia , Ratos , Ratos Wistar , Convulsões/genética
14.
Neurosci Biobehav Rev ; 140: 104771, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817171

RESUMO

The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Animais , Ansiedade , Transtornos de Ansiedade , Comportamento Animal , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Modelos Animais , Estresse Psicológico
15.
Mol Neurobiol ; 59(6): 3721-3737, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35378696

RESUMO

Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD), mostly due to the high number of patients diagnosed with AD who develop epileptic seizures later on. However, this link is not well understood. Previous studies from our group have identified memory impairment and metabolic abnormalities in the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy. Our goal was to investigate AD behavioral and molecular alterations, including brain insulin resistance, in naïve (seizure-free) animals of the WAR strain. We used the Morris water maze (MWM) test to evaluate spatial learning and memory performance and hippocampal tissue to verify possible molecular and immunohistochemical alterations. WARs presented worse performance in the MWM test (p < 0.0001), higher levels of hyperphosphorylated tau (S396) (p < 0.0001) and phosphorylated glycogen synthase kinase 3 (S21/9) (p < 0.05), and lower insulin receptor levels (p < 0.05). Conversely, WARs and Wistar controls present progressive increase in amyloid fibrils (p < 0.0001) and low levels of soluble amyloid-ß. Interestingly, the detected alterations were age-dependent, reaching larger differences in aged than in young adult animals. In summary, the present study provides evidence of a partial AD-like phenotype, including altered regulation of insulin signaling, in a genetic model of epilepsy. Together, these data contribute to the understanding of the connection between epilepsy and AD as comorbidities. Moreover, since both tau hyperphosphorylation and altered insulin signaling have already been reported in epilepsy and AD, these two events should be considered as important components in the interconnection between epilepsy and AD pathogenesis and, therefore, potential therapeutic targets in this field.


Assuntos
Doença de Alzheimer , Epilepsia , Resistência à Insulina , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Epilepsia/genética , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Aprendizagem em Labirinto/fisiologia , Modelos Genéticos , Fenótipo , Ratos , Ratos Wistar , Proteínas tau/metabolismo
16.
Epilepsia Open ; 7 Suppl 1: S8-S22, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35253410

RESUMO

Drug-resistant epilepsy remains to this day as a highly prevalent condition affecting around one-third of patients with epilepsy, despite all the research and the development of several new antiseizure medications (ASMs) over the last decades. Epilepsies are multifactorial complex diseases, commonly associated with psychiatric, neurological, and somatic comorbidities. Thus, to solve the puzzling problem of pharmacoresistance, the diagnosis and modeling of epilepsy and comorbidities need to change toward a complex system approach. In this review, we have summarized the sequence of events for the definition of epilepsies and comorbidities, the search for mechanisms, and the major hypotheses of pharmacoresistance, drawing attention to some of the many converging aspects between the proposed mechanisms, their supporting evidence, and comorbidities-related alterations. The use of systems biology applied to epileptology may lead to the discovery of new targets and the development of new ASMs, as may advance our understanding of the epilepsies and their comorbidities, providing much deeper insight on multidrug pharmacoresistance.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Resistência a Medicamentos , Epilepsia/tratamento farmacológico , Humanos , Biologia de Sistemas
17.
Biomedicines ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203625

RESUMO

Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.

19.
Epilepsy Res ; 176: 106693, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225231

RESUMO

The WAG/Rij strain of rats is commonly used as a preclinical model of genetic absence epilepsy. While widely utilized, the developmental trajectory of absence seizure expression has been only partially described. Moreover, sex differences in this strain have been under-explored. Here, we longitudinally monitored male and female WAG/Rij rats to quantify cortical spike-and-wave discharges (SWDs) monthly, from 4 to 10 months of age. In both male and female WAG/Rij rats, absence seizure susceptibility increased with age. In contrast to previous reports, we found a robust and consistent increase in absence epilepsy susceptibility in male WAG/Rij rats in comparison to females across months. The increased absence seizure susceptibility was characterized by increased number and duration of SWDs, and consequently increased total SWDs duration. These findings highlight a previously un-recognized sex difference in a model of absence epilepsy and narrow the knowledge gap of age-dependent expression of SWDs in the WAG/Rij strain.


Assuntos
Epilepsia Tipo Ausência , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/genética , Feminino , Masculino , Ratos , Ratos Wistar , Convulsões/genética
20.
Neuropharmacology ; 197: 108712, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274349

RESUMO

The incidence of chronic pain is high in the general population and it is closely related to anxiety disorders, which promote negative effects on the quality of life. The cannabinoid system has essential participation in the pain sensitivity circuit. In this perspective, cannabidiol (CBD) is considered a promising strategy for treating neuropathic pain. Our study aimed to evaluate the effects of sub-chronic systemic treatment with CBD (0.3, 3, 10, or 30 mg/kg, i.p.) in male in rats submitted to chronic constriction injury of the sciatic nerve (CCI) or not (SHAM) and assessed in nociceptive tests (von Frey, acetone, and hot plate, three days CBD's treatment) and in the open field test (OFT, two days CBD's treatment). We performed a screening immunoreactivity of CB1 and TRPV1 receptors in cortical and limbic regions tissues, which were collected after 1.5 h of behavioral tests on the 24th experimental day. This study presents a dose-response curve to understand better the effects of low doses (3 mg/kg) on CBD's antiallodynic and anxiolytic effects. Also, low doses of CBD were able to (1) reverse mechanical and thermal allodynia (cold) and hyperalgesia, (2) reverse anxious behaviors (reduction of the % of grooming and freezing time, and increase of the % of center time in the OFT) induced by chronic pain. The peripheral neuropathy promoted the increase in the expression of CB1 and TRPV1 receptors in the anterior cingulate cortex (ACC), anterior insular cortex (AIC), basolateral amygdala (BLA), dorsal hippocampus (DH), and ventral hippocampus (VH). CBD potentiated this effect in the ACC, AIC, BLA, DH, and VH regions. These results provide substantial evidence of the role of the ACC-AIC-BLA corticolimbic circuit, and BLA-VH for pain regulation. These results can be clinically relevant since they contribute to the evidence of CBD's beneficial effects on treating chronic pain and associated comorbidities such as anxiety.


Assuntos
Ansiedade/tratamento farmacológico , Canabidiol/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptor CB1 de Canabinoide/efeitos dos fármacos , Canais de Cátion TRPV/efeitos dos fármacos , Animais , Ansiedade/psicologia , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Temperatura Alta , Sistema Límbico/efeitos dos fármacos , Masculino , Rede Nervosa/efeitos dos fármacos , Neuralgia/metabolismo , Neuralgia/psicologia , Medição da Dor/efeitos dos fármacos , Estimulação Física , Ratos , Ratos Wistar , Ciática/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA