RESUMO
Tackling the growing incidence and prevalence of obesity urgently requires uncovering new molecular pathways with therapeutic potential. The brain, and in particular the hypothalamus, is a major integrator of metabolic signals from peripheral tissues that regulate functions such as feeding behavior and energy expenditure. In obesity, hypothalamic capacity to sense nutritional status and regulate these functions is altered. An emerging line of research is that hypothalamic lipid metabolism plays a critical role in regulating energy balance. Here, we focus on the carnitine palmitoyltransferase 1 (CPT1) enzyme family responsible for long-chain fatty acid metabolism. The evidence suggests that two of its isoforms expressed in the brain, CPT1A and CPT1C, play a crucial role in hypothalamic lipid metabolism, and their promise as targets in food intake and bodyweight management is currently being intensively investigated. In this review we describe and discuss the metabolic actions and potential up- and downstream effectors of hypothalamic CPT1 isoforms, and posit the need to develop innovative nanomedicine platforms for selective targeting of CPT1 and related nutrient sensors in specific brain areas as potential next-generation therapy to treat obesity.
Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo Energético , Humanos , Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Isoformas de Proteínas/metabolismo , Hipotálamo/metabolismoRESUMO
Targeting brain lipid metabolism is a promising strategy to regulate the energy balance and fight metabolic diseases such as obesity. The development of stable platforms for selective delivery of drugs, particularly to the hypothalamus, is a challenge but a possible solution for these metabolic diseases. Attenuating fatty acid oxidation in the hypothalamus via CPT1A inhibition leads to satiety, but this target is difficult to reach in vivo with the current drugs. We propose using an advanced crosslinked polymeric micelle-type nanomedicine that can stably load the CPT1A inhibitor C75-CoA for in vivo control of the energy balance. Central administration of the nanomedicine induced a rapid attenuation of food intake and body weight in mice via regulation of appetite-related neuropeptides and neuronal activation of specific hypothalamic regions driving changes in the liver and adipose tissue. This nanomedicine targeting brain lipid metabolism was successful in the modulation of food intake and peripheral metabolism in mice.
Assuntos
Metabolismo dos Lipídeos , Nanomedicina , Camundongos , Animais , Metabolismo Energético , Obesidade/metabolismo , Hipotálamo/metabolismoRESUMO
Sensing of long-chain fatty acids (LCFA) in the hypothalamus modulates energy balance, and its disruption leads to obesity. To date, the effects of saturated or unsaturated LCFA on hypothalamic-brown adipose tissue (BAT) axis and the underlying mechanisms have remained largely unclear. Our aim was to characterize the main molecular pathways involved in the hypothalamic regulation of BAT thermogenesis in response to LCFA with different lengths and degrees of saturation. One-week administration of high-fat diet enriched in monounsaturated FA led to higher BAT thermogenesis compared to a saturated FA-enriched diet. Intracerebroventricular infusion of oleic and linoleic acids upregulated thermogenesis markers and temperature in brown fat of mice, and triggered neuronal activation of paraventricular (PaV), ventromedial (VMH) and arcuate (ARC) hypothalamic nuclei, which was not found with saturated FAs. The neuron-specific protein carnitine palmitoyltransferase 1-C (CPT1C) was a crucial effector of oleic acid since the FA action was blunted in CPT1C-KO mice. Moreover, changes in the AMPK/ACC/malonyl-CoA pathway and fatty acid synthase expression were evoked by oleic acid. Altogether, central infusion of unsaturated but not saturated LCFA increases BAT thermogenesis through CPT1C-mediated sensing of FA metabolism shift, which in turn drive melanocortin system activation. These findings add new insight into neuronal circuitries activated by LCFA to drive thermogenesis.
Assuntos
Tecido Adiposo Marrom , Hipotálamo , Termogênese , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Ácidos Oleicos/metabolismo , Termogênese/genética , Termogênese/fisiologiaRESUMO
Genetic information has been crucial to understand the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) at diagnosis and at relapse, but still nowadays has a limited value in a clinical context. Few genetic markers are associated with the outcome of T-ALL patients, independently of measurable residual disease (MRD) status after therapy. In addition, the prognostic relevance of genetic features may be modulated by the specific treatment used. We analyzed the genetic profile of 145 T-ALL patients by targeted deep sequencing. Genomic information was integrated with the clinicalbiological and survival data of a subset of 116 adult patients enrolled in two consecutive MRD-oriented trials of the Spanish PETHEMA (Programa Español de Tratamientos en Hematología) group. Genetic analysis revealed a mutational profile defined by DNMT3A/ N/KRAS/ MSH2/ U2AF1 gene mutations that identified refractory/resistant patients. Mutations in the DMNT3A gene were also found in the non-leukemic cell fraction of patients with T-ALL, revealing a possible mutational-driven clonal hematopoiesis event to prime T-ALL in elderly. The prognostic impact of this adverse genetic profile was independent of MRD status on day +35 of induction therapy. The combined worse-outcome genetic signature and MRD on day +35 allowed risk stratification of T-ALL into standard or high-risk groups with significantly different 5- year overall survival (OS) of 52% (95% confidence interval: 37-67) and 17% (95% confidence interval: 1-33), respectively. These results confirm the relevance of the tumor genetic profile in predicting patient outcome in adult T-ALL and highlight the need for novel gene-targeted chemotherapeutic schedules to improve the OS of poor-prognosis T-ALL patients.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Adulto , Idoso , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Intervalo Livre de Doença , Prognóstico , Neoplasia Residual/genética , Genômica , Linfócitos T/patologiaRESUMO
Carnitine palmitoyltransferase 1A (CPT1A) is a central player in lipid metabolism, catalyzing the first step to fatty acid oxidation (FAO). Inhibiting CPT1A, especially in the brain, can have several pharmacological benefits, such as in treating obesity and brain cancer. C75-CoA is a strong competitive inhibitor of CPT1A. However, due to its negatively charged nature, it has low cellular permeability. Herein, we report the use of poly-ion complex (PIC) micelles to deliver the specific CPT1A inhibitors (±)-, (+)-, and (-)-C75-CoA into U87MG glioma cells and GT1-7 neurons. PIC micelles were formed through charge-neutralization of the cargo with the cationic side chain of PEG-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-PAsp(DET)), forming particles with 55 to 65 nm diameter. Upon short-term incubation with cells, the micelle-encapsulated CPT1A inhibitors resulted in up to 5-fold reduction of ATP synthesis compared to the free drug, without an apparent decline in cell viability. Micelle treatment showed a discernible decrease in 14C-palmitate oxidation into CO2 and acid-soluble metabolites, confirming that the substantial lowering of ATP production has resulted from FAO inhibition. Micelle treatment also diminished IC50 by 2 to 4-fold over the free drug-treated U87MG after long-term incubation. To measure the cellular uptake of these CoA-adduct loaded PIC micelles, we synthesized a fluorescent CoA derivative and prepared Fluor-CoA micelles which showed efficient internalization in the cell lines, both in 2D and 3D culture models, especially in neurons where uptake reached up to 3-fold over the free dye. Our results starkly demonstrate that the PIC micelles are a promising delivery platform for anionic inhibitors of CPT1A in glioma cells and neurons, laying the groundwork for future research or clinical applications.
Assuntos
Metabolismo dos Lipídeos , Micelas , Encéfalo , Coenzima A , Oxirredução , PolietilenoglicóisRESUMO
Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2'-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5'-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.
Assuntos
Citotoxinas/farmacologia , Desoxiuridina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila , Quadruplex G , Neoplasias/tratamento farmacológico , Citotoxinas/química , Desoxiuridina/química , Desoxiuridina/farmacologia , Células HT29 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologiaRESUMO
Medical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood-brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations. Although many previous reviews are focused on brain targeting with nanomedicines in general, none of those are concerned explicitly on the neurons, while targeting neuronal cells in central nervous diseases is now one of the biggest challenges in nanomedicine and neuroscience. We review the most relevant advances in nanomedicine design and strategies for neuronal drug delivery that might successfully bridge the gap between laboratory and bedside treatment in neurology.