Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18188, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521928

RESUMO

Gene editing methods are an attractive therapeutic option for Duchenne muscular dystrophy, and they have an immediate application in the generation of research models. To generate myoblast cultures that could be useful in in vitro drug screening, we have optimised a CRISPR/Cas9 gene edition protocol. We have successfully used it in wild type immortalised myoblasts to delete exon 52 of the dystrophin gene, modelling a common Duchenne muscular dystrophy mutation; and in patient's immortalised cultures we have deleted an inhibitory microRNA target region of the utrophin UTR, leading to utrophin upregulation. We have characterised these cultures by demonstrating, respectively, inhibition of dystrophin expression and overexpression of utrophin, and evaluating the expression of myogenic factors (Myf5 and MyH3) and components of the dystrophin associated glycoprotein complex (α-sarcoglycan and ß-dystroglycan). To demonstrate their use in the assessment of DMD treatments, we have performed exon skipping on the DMDΔ52-Model and have used the unedited DMD cultures/ DMD-UTRN-Model combo to assess utrophin overexpression after drug treatment. While the practical use of DMDΔ52-Model is limited to the validation to our gene editing protocol, DMD-UTRN-Model presents a possible therapeutic gene edition target as well as a useful positive control in the screening of utrophin overexpression drugs.


Assuntos
Descoberta de Drogas/métodos , Edição de Genes/métodos , Distrofia Muscular de Duchenne/genética , Mioblastos/efeitos dos fármacos , Cultura Primária de Células/métodos , Utrofina/genética , Regiões 3' não Traduzidas/genética , Sistemas CRISPR-Cas , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Distroglicanas/metabolismo , Distrofina/genética , Células HEK293 , Humanos , Distrofia Muscular de Duchenne/metabolismo , Mioblastos/metabolismo , Fator Regulador Miogênico 5/metabolismo , Sarcoglicanas/metabolismo , Utrofina/metabolismo
2.
PLoS One ; 13(10): e0204485, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278058

RESUMO

BACKGROUND: Duchenne muscular dystrophy is a lethal disease caused by lack of dystrophin. Skipping of exons adjacent to out-of-frame deletions has proven to restore dystrophin expression in Duchenne patients. Exon 51 has been the most studied target in both preclinical and clinical settings and the availability of standardized procedures to quantify exon skipping would be advantageous for the evaluation of preclinical and clinical data. OBJECTIVE: To compare methods currently used to quantify antisense oligonucleotide-induced exon 51 skipping in the DMD transcript and to provide guidance about the method to use. METHODS: Six laboratories shared blinded RNA samples from Duchenne patient-derived muscle cells treated with different amounts of exon 51 targeting antisense oligonucleotide. Exon 51 skipping levels were quantified using five different techniques: digital droplet PCR, single PCR assessed with Agilent bioanalyzer, nested PCR with agarose gel image analysis by either ImageJ or GeneTools software and quantitative real-time PCR. RESULTS: Differences in mean exon skipping levels and dispersion around the mean were observed across the different techniques. Results obtained by digital droplet PCR were reproducible and showed the smallest dispersion. Exon skipping quantification with the other methods showed overestimation of exon skipping or high data variation. CONCLUSIONS: Our results suggest that digital droplet PCR was the most precise and quantitative method. The quantification of exon 51 skipping by Agilent bioanalyzer after a single round of PCR was the second-best choice with a 2.3-fold overestimation of exon 51 skipping levels compared to digital droplet PCR.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oligonucleotídeos Antissenso , Reação em Cadeia da Polimerase/métodos , Splicing de RNA , Linhagem Celular , Distrofina/metabolismo , Éxons , Humanos , Mioblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA