Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(17): 12865-12874, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39263542

RESUMO

The oxidation of Ag crystal surfaces has recently triggered strong controversies around the presence of sulfur impurities that may catalyze reactions, such as the alkene epoxidations, especially the ethylene epoxidation. A fundamental challenge to achieve a clear understanding is the variety of procedures and setups involved as well as the particular history of each sample. Especially, for the often-used X-ray photoemission technique, product detection, or photoemission peak position overlap are problematic. Here we investigate the oxidation of the Ag(111) surface and its vicinal crystal planes simultaneously, using a curved crystal sample and in situ X-ray photoelectron spectroscopy at 1 mbar O2 near-ambient pressure conditions to further investigate surface species. The curved geometry allows a straightforward comparative analysis of the surface oxidation kinetics at different crystal facets, so as to precisely correlate the evolution of different oxygen species, namely nucleophilic and electrophilic oxygen, and the buildup of sulfur as a function of the crystal orientation. We observed that emission from both surface and bulk oxide contributes to the characteristic nucleophilic oxygen core-level peak, which arises during oxygen dosing and rapidly saturates below temperatures of 180 °C. The electrophilic oxygen peak appears later, growing at a slower but constant rate, at the expenses of the surface oxide. Electrophilic oxygen and sulfur core-levels evolve in parallel in all crystal facets, although faster and stronger at vicinal surfaces featuring B-type steps with {111} microfacets. Our study confirms the intimate connection of the electrophilic species with the formation of adsorbed SO4, and points to a higher catalytic activity of B-type stepped silver surfaces for alkene epoxidation or methane to formaldehyde conversion.

2.
Breast Cancer Res Treat ; 206(3): 561-573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814508

RESUMO

BACKGROUND: Breast cancer remains the most commonly diagnosed cancer in women. Breast-conserving surgery (BCS) is the standard approach for small low-risk tumors. If the efficacy of cryoablation is demonstrated, it could provide a minimally invasive alternative to surgery. PURPOSE: To determine the success of ultrasound-guided cryoablation in achieving the absence of Residual Invasive Cancer (RIC) for patients with ER + /HER2- tumors ≤ 2cm and sonographically negative axillary nodes. MATERIALS AND METHODS: This prospective study was carried out from April 2021 to June 2023, and involved 60 preoperative cryoablation procedures on ultrasound-visible, node-negative (cN0) infiltrating ductal carcinomas (IDC). Standard diagnostic imaging included mammography and tomosynthesis, supplemented by ultrasound-guided biopsy. MRI was performed in patients with associated intraductal carcinoma (DCIS) and an invasive component on core needle biopsy (18 out of 22 cases). All tumors were tagged with ferromagnetic seeds. A triple-phase protocol (freezing-thawing-freezing) with Argon was used, with an average procedure duration of 40 min. A logistic regression model was applied to determine significant correlation between RIC and the study variables. RESULTS: Fifty-nine women (mean age 63 ± 8 years) with sixty low-risk unifocal IDC underwent cryoablation prior to surgery. Pathological examination of lumpectomy specimens post-cryoablation revealed RIC in only one of 38 patients with pure IDC and in 4 of 22 mixed IDC/DCIS cases. All treated tumors had clear surgical margins, with no significant procedural complications. CONCLUSIONS: Cryoablation was effective in eradicating 97% of pure infiltrating ER + /HER2-tumors ≤ 2cm, demonstrating its potential as a surgical alternative in selected patients.


Assuntos
Neoplasias da Mama , Criocirurgia , Receptor ErbB-2 , Humanos , Feminino , Criocirurgia/métodos , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Receptor ErbB-2/metabolismo , Estudos Prospectivos , Prognóstico , Neoplasia Residual , Adulto , Receptores de Estrogênio/metabolismo , Carcinoma Ductal de Mama/cirurgia , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/diagnóstico por imagem , Mastectomia Segmentar/métodos , Idoso de 80 Anos ou mais , Cuidados Pré-Operatórios/métodos
3.
ACS Catal ; 14(8): 6319-6327, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38660607

RESUMO

We investigate the chemical interaction of carbon monoxide (CO) and oxygen (O2) with kink atoms on steps of platinum crystal surfaces using a specially designed Pt curved sample. We aim at describing the fundamental stages of the CO oxidation reaction, i.e., CO-covered/poisoned stage and O-covered/active stage, at the poorly known kinked Pt facets by probing CO uptake/saturation and O2 saturation, respectively. Based on the systematic analysis that the curved surface allows, and using high-resolution X-ray photoemission, a diversity of terrace and step/kink species are straightforwardly identified and accurately quantified, defining a smooth structural and chemical variation across different crystal planes. In the CO-saturated case, we observe a preferential adsorption at step edges, where the CO coverage reaches a CO molecule per step Pt atom, significantly higher than their close-packed analogous steps with straight terrace termination. For the O-saturated surface, a significantly higher O coverage is observed in kinked planes compared to the Pt(111) surface. While the strong adsorption of CO at the kinked edges points toward a higher ignition temperature of the CO oxidation at kinks as compared to terraces, the large O coverage at steps may lead to an increased reactivity of kinked surfaces during the active stage of the CO oxidation.

4.
Nature ; 625(7994): 282-286, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200297

RESUMO

The large-scale conversion of N2 and H2 into NH3 (refs. 1,2) over Fe and Ru catalysts3 for fertilizer production occurs through the Haber-Bosch process, which has been considered the most important scientific invention of the twentieth century4. The active component of the catalyst enabling the conversion was variously considered to be the oxide5, nitride2, metallic phase or surface nitride6, and the rate-limiting step has been associated with N2 dissociation7-9, reaction of the adsorbed nitrogen10 and also NH3 desorption11. This range of views reflects that the Haber-Bosch process operates at high temperatures and pressures, whereas surface-sensitive techniques that might differentiate between different mechanistic proposals require vacuum conditions. Mechanistic studies have accordingly long been limited to theoretical calculations12. Here we use X-ray photoelectron spectroscopy-capable of revealing the chemical state of catalytic surfaces and recently adapted to operando investigations13 of methanol14 and Fischer-Tropsch synthesis15-to determine the surface composition of Fe and Ru catalysts during NH3 production at pressures up to 1 bar and temperatures as high as 723 K. We find that, although flat and stepped Fe surfaces and Ru single-crystal surfaces all remain metallic, the latter are almost adsorbate free, whereas Fe catalysts retain a small amount of adsorbed N and develop at lower temperatures high amine (NHx) coverages on the stepped surfaces. These observations indicate that the rate-limiting step on Ru is always N2 dissociation. On Fe catalysts, by contrast and as predicted by theory16, hydrogenation of adsorbed N atoms is less efficient to the extent that the rate-limiting step switches following temperature lowering from N2 dissociation to the hydrogenation of surface species.

5.
Phys Chem Chem Phys ; 26(3): 2332-2340, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165839

RESUMO

Oxide-derived metals are produced by reducing an oxide precursor. These materials, including gold, have shown improved catalytic performance over many native metals. The origin of this improvement for gold is not yet understood. In this study, operando non-resonant sum frequency generation (SFG) and ex situ high-pressure X-ray photoelectron spectroscopy (HP-XPS) have been employed to investigate electrochemically-formed oxide-derived gold (OD-Au) from polycrystalline gold surfaces. A range of different oxidizing conditions were used to form OD-Au in acidic aqueous medium (H3PO4, pH = 1). Our electrochemical data after OD-Au is generated suggest that the surface is metallic gold, however SFG signal variations indicate the presence of subsurface gold oxide remnants between the metallic gold surface layer and bulk gold. The HP-XPS results suggest that this subsurface gold oxide could be in the form of Au2O3 or Au(OH)3. Furthermore, the SFG measurements show that with reducing electrochemical treatments the original gold metallic state can be restored, meaning the subsurface gold oxide is released. This work demonstrates that remnants of gold oxide persist beneath the topmost gold layer when the OD-Au is created, potentially facilitating the understanding of the improved catalytic properties of OD-Au.

6.
Chemphyschem ; 25(1): e202300523, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877432

RESUMO

Operando probing by x-ray photoelectron spectroscopy (XPS) of certain hydrogenation reactions are often limited by the scattering of photoelectrons in the gas phase. This work describes a method designed to partially circumvent this so called pressure gap. By performing a rapid switch from a high pressure (where acquisition is impossible) to a lower pressure we can for a short while probe a "remnant" of the high pressure surface as well as the time dynamics during the re-equilibration to the new pressure. This methodology is demonstrated using the CO2 and the CO hydrogenation reaction over Rh(211). In the CO2 hydrogenation reaction, the remnant surface of a 2 bar pressure shows an adsorbate distribution which favors chemisorbed CHx adsorbates over chemisorbed CO. This contrasts against previous static operando spectra acquired at lower pressures. Furthermore, the pressure jumping method yields a faster acquisition and more detailed spectra than static operando measurements above 1 bar. In the CO hydrogenation reaction, we observe that CHx accumulated faster during the 275 mbar low pressure regime, and different hypotheses are presented regarding this observation.

7.
J Am Chem Soc ; 144(33): 15363-15371, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960901

RESUMO

Curved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO2 fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps. Such fundamental dissimilarity is explained in ambient pressure X-ray photoemission (AP-XPS) experiments, which reveal partial CO desorption and oxygen buildup only at B-steps. AP-XPS also proves that A-B step asymmetries extend to the active stage: at A-steps, low-active O-Rh-O trilayers buildup immediately after ignition, while highly active chemisorbed O is the dominant species on B-type steps. We conclude that B-steps are more efficient than A-steps for the CO oxidation.

8.
J Phys Chem Lett ; 12(39): 9508-9515, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34559547

RESUMO

Steps at metal surfaces may influence energetics and kinetics of catalytic reactions in unexpected ways. Here, we report a significant reduction of the CO saturation coverage in Pd vicinal surfaces, which in turn is relevant for the light-off of the CO oxidation reaction. The study is based on a systematic investigation of CO adsorption on vicinal Pd(111) surfaces making use of a curved Pd crystal. A combined X-ray Photoelectron Spectroscopy and DFT analysis allows us to demonstrate that an entire row of atomic sites under Pd steps remains free of CO upon saturation at 300 K, leading to a step-density-dependent reduction of CO coverage that correlates with the observed decrease of the light-off temperature during CO oxidation in vicinal Pd surfaces.

10.
Angew Chem Int Ed Engl ; 59(45): 20037-20043, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32701180

RESUMO

The catalytic oxidation of CO on transition metals, such as Pt, is commonly viewed as a sharp transition from the CO-inhibited surface to the active metal, covered with O. However, we find that minor amounts of O are present in the CO-poisoned layer that explain why, surprisingly, CO desorbs at stepped and flat Pt crystal planes at once, regardless of the reaction conditions. Using near-ambient pressure X-ray photoemission and a curved Pt(111) crystal we probe the chemical composition at surfaces with variable step density during the CO oxidation reaction. Analysis of C and O core levels across the curved crystal reveals that, right before light-off, subsurface O builds up within (111) terraces. This is key to trigger the simultaneous ignition of the catalytic reaction at different Pt surfaces: a CO-Pt-O complex is formed that equals the CO chemisorption energy at terraces and steps, leading to the abrupt desorption of poisoning CO from all crystal facets at the same temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA