Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(10): 100502, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216428

RESUMO

As a promising candidate for exhibiting quantum computational supremacy, Gaussian boson sampling (GBS) is designed to exploit the ease of experimental preparation of Gaussian states. However, sufficiently large and inevitable experimental noise might render GBS classically simulable. In this work, we formalize this intuition by establishing a sufficient condition for approximate polynomial-time classical simulation of noisy GBS-in the form of an inequality between the input squeezing parameter, the overall transmission rate, and the quality of photon detectors. Our result serves as a nonclassicality test that must be passed by any quantum computational supremacy demonstration based on GBS. We show that, for most linear-optical architectures, where photon loss increases exponentially with the circuit depth, noisy GBS loses its quantum advantage in the asymptotic limit. Our results thus delineate intermediate-sized regimes where GBS devices might considerably outperform classical computers for modest noise levels. Finally, we find that increasing the amount of input squeezing is helpful to evade our classical simulation algorithm, which suggests a potential route to mitigate photon loss.

2.
Phys Rev Lett ; 111(3): 030503, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909302

RESUMO

We prove the equivalence of an arbitrary single-mode Gaussian quantum channel and a newly defined fiducial channel preceded by a phase shift and followed by a Gaussian unitary operation. This equivalence implies that the energy-constrained classical capacity of any single-mode Gaussian channel can be calculated based on this fiducial channel, which is furthermore simply realizable with a beam splitter, two identical single-mode squeezers, and a two-mode squeezer. In a large domain of parameters, we also provide an analytical expression for the Gaussian classical capacity, exploiting its additivity, and prove that the classical capacity cannot exceed it by more than 1/ln2 bits.

3.
Phys Rev Lett ; 110(3): 030502, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23373907

RESUMO

We prove the security of Gaussian continuous-variable quantum key distribution with coherent states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries of the protocols as well as the postselection technique introduced by Christandl, Koenig, and Renner [Phys. Rev. Lett. 102, 020504 (2009)].

4.
Phys Rev Lett ; 108(11): 110505, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540448

RESUMO

A long-standing open problem in quantum information theory is to find the classical capacity of an optical communication link, modeled as a Gaussian bosonic channel. It has been conjectured that this capacity is achieved by a random coding of coherent states using an isotropic Gaussian distribution in phase space. We show that proving a Gaussian minimum entropy conjecture for a quantum-limited amplifier is actually sufficient to confirm this capacity conjecture, and we provide a strong argument towards this proof by exploiting a connection between quantum entanglement and majorization theory.

5.
Phys Rev Lett ; 106(4): 040403, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21405310

RESUMO

Closed timelike curves (CTCs) are trajectories in spacetime that effectively travel backwards in time: a test particle following a CTC can interact with its former self in the past. A widely accepted quantum theory of CTCs was proposed by Deutsch. Here we analyze an alternative quantum formulation of CTCs based on teleportation and postselection, and show that it is inequivalent to Deutsch's. The predictions or retrodictions of our theory can be simulated experimentally: we report the results of an experiment illustrating how in our particular theory the "grandfather paradox" is resolved.

6.
Phys Rev Lett ; 102(21): 210501, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19519088

RESUMO

In this Letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This leads to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.

7.
Phys Rev Lett ; 102(13): 130501, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19392336

RESUMO

A continuous-variable quantum key distribution protocol based on squeezed states and heterodyne detection is introduced and shown to attain higher secret key rates over a noisy line than any other one-way Gaussian protocol. This increased resistance to channel noise can be understood as resulting from purposely adding noise to the signal that is converted into the secret key. This notion of noise-enhanced tolerance to noise also provides a better physical insight into the poorly understood discrepancies between the previously defined families of Gaussian protocols.

8.
Phys Rev Lett ; 102(5): 050503, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19257494

RESUMO

We define the direct and reverse secret-key capacities of a memoryless quantum channel as the optimal rates that entanglement-based quantum-key-distribution protocols can reach by using a single forward classical communication (direct reconciliation) or a single feedback classical communication (reverse reconciliation). In particular, the reverse secret-key capacity can be positive for antidegradable channels, where no forward strategy is known to be secure. This property is explicitly shown in the continuous variable framework by considering arbitrary one-mode Gaussian channels.

9.
Phys Rev Lett ; 98(3): 030503, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17358671

RESUMO

An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated experimentally. By varying the interception fraction, one can implement a family of attacks where the eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the channel, and may also result in non-Gaussian output distributions. We implement and characterize the measurements needed to detect these attacks, and evaluate experimentally the information rates available to the legitimate users and the eavesdropper. The results are consistent with the optimality of Gaussian attacks resulting from the security proofs.

10.
Phys Rev Lett ; 97(19): 190503, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17155606

RESUMO

A fully general approach to the security analysis of continuous-variable quantum key distribution (CV-QKD) is presented. Provided that the quantum channel is estimated via the covariance matrix of the quadratures, Gaussian attacks are shown to be optimal against all collective eavesdropping strategies. The proof is made strikingly simple by combining a physical model of measurement, an entanglement-based description of CV-QKD, and a recent powerful result on the extremality of Gaussian states [M. M. Wolf, Phys. Rev. Lett. 96, 080502 (2006)10.1103/PhysRevLett.96.080502].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA