Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34372016

RESUMO

Ultrasonic molding (USM) is a good candidate for studying the plasticization of polymer mixtures or other composite materials due to either the little amount of material needed for processing, low waste or the needed low pressure and residence time of the mold. Thus, the novelty of this research is the capability of USM technology to process PLA/PCL blends and their corresponding neat materials, encompassing all the production stages, from raw material to the final specimen. The major findings of the work revealed that the thermal properties of the blends were not affected by the USM process, although the crystallinity degree experienced variations, decreasing for PLA and increasing for PCL, which was attributed to the crystallization rate of each polymer, the high process speed, the short cooling time and the small particle size. The employed ultrasonic energy increased the molecular weight with low variations through the specimen. However, the degradation results aligned with the expected trend of these material blends. Moreover, this study also showed the effect pellet shape and dimensions have over the process parameters, as well as the effect of the blend composition. It can be concluded that USM is a technology suitable to successfully process PLA/PCL blends with the correct determination of process parameter windows.

2.
Polymers (Basel) ; 10(4)2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30966426

RESUMO

Sheets of polycaprolactone (PCL) and ultra-high molecular weight polyethylene (UHMWPE) were fabricated and shaped by the Single-Point Incremental Forming process (SPIF). The performance of these biocompatible polymers in SPIF was assessed through the variation of four main parameters: the diameter of the forming tool, the spindle speed, the feed rate, and the step size based on a Box⁻Behnken design of experiments of four variables and three levels. The design of experiments allowed us to identify the parameters that most affect the forming of PCL and UHMWPE. The study was completed by means of a deep characterization of the thermal and structural properties of both polymers. These properties were correlated to the performance of the polymers observed in SPIF, and it was found that the polymer chains are oriented as a consequence of the SPIF processing. Moreover, by X-ray diffraction it was proved that polymer chains behave differently on each surface of the fabricated parts, since the chains on the surface in contact with the forming tool are oriented horizontally, while on the opposite surface they are oriented in the vertical direction. The unit cell of UHMWPE is distorted, passing from an orthorhombic cell to a monoclinic due to the slippage between crystallites. This slippage between crystallites was observed in both PCL and UHMWPE, and was identified as an alpha star thermal transition located in the rubbery region between the glass transition and the melting point of each polymer.

3.
Molecules ; 21(4): 537, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27120585

RESUMO

The cancer stem cell (CSC) population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs' phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone) (PCL), a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI) was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control). Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population.


Assuntos
Neoplasias da Mama/patologia , Técnicas de Cultura de Células/métodos , Células-Tronco Neoplásicas/patologia , Poliésteres/química , Alicerces Teciduais/química , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Células MCF-7 , Propriedades de Superfície , Engenharia Tecidual/métodos
4.
Materials (Basel) ; 7(1): 441-456, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-28788466

RESUMO

In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model's theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA