Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mar Biol ; 92: 55-127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36208879

RESUMO

Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.


Assuntos
Antozoários , Dinoflagellida , Animais , Recifes de Corais , Dinoflagellida/genética , Ecossistema , Simbiose
2.
Mol Ecol ; 30(1): 343-360, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141992

RESUMO

Dinoflagellates of the family Symbiodiniaceae form mutualistic symbioses with marine invertebrates such as reef-building corals, but also inhabit reef environments as free-living cells. Most coral species acquire Symbiodiniaceae horizontally from the surrounding environment during the larval and/or recruitment phase, however the phylogenetic diversity and ecology of free-living Symbiodiniaceae on coral reefs is largely unknown. We coupled environmental DNA sequencing and genus-specific qPCR to resolve the community structure and cell abundances of free-living Symbiodiniaceae in the water column, sediment, and macroalgae and compared these to coral symbionts. Sampling was conducted at two time points, one of which coincided with the annual coral spawning event when recombination between hosts and free-living Symbiodiniaceae is assumed to be critical. Amplicons of the internal transcribed spacer (ITS2) region were assigned to 12 of the 15 Symbiodiniaceae genera or genera-equivalent lineages. Community compositions were separated by habitat, with water samples containing a high proportion of sequences corresponding to coral symbionts of the genus Cladocopium, potentially as a result of cell expulsion from in hospite populations. Sediment-associated Symbiodiniaceae communities were distinct, potentially due to the presence of exclusively free-living species. Intriguingly, macroalgal surfaces displayed the highest cell abundances of Symbiodiniaceae, suggesting a key role for macroalgae in ensuring the ecological success of corals through maintenance of a continuum between environmental and symbiotic populations of Symbiodiniaceae.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , Ecossistema , Filogenia
3.
Ecol Evol ; 9(3): 938-956, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805132

RESUMO

Repeat marine heat wave-induced mass coral bleaching has decimated reefs in Seychelles for 35 years, but how coral-associated microbial diversity (microalgal endosymbionts of the family Symbiodiniaceae and bacterial communities) potentially underpins broad-scale bleaching dynamics remains unknown. We assessed microbiome composition during the 2016 heat wave peak at two contrasting reef sites (clear vs. turbid) in Seychelles, for key coral species considered bleaching sensitive (Acropora muricata, Acropora gemmifera) or tolerant (Porites lutea, Coelastrea aspera). For all species and sites, we sampled bleached versus unbleached colonies to examine how microbiomes align with heat stress susceptibility. Over 30% of all corals bleached in 2016, half of which were from Acropora sp. and Pocillopora sp. mass bleaching that largely transitioned to mortality by 2017. Symbiodiniaceae ITS2-sequencing revealed that the two Acropora sp. and P. lutea generally associated with C3z/C3 and C15 types, respectively, whereas C. aspera exhibited a plastic association with multiple D types and two C3z types. 16S rRNA gene sequencing revealed that bacterial communities were coral host-specific, largely through differences in the most abundant families, Hahellaceae (comprising Endozoicomonas), Rhodospirillaceae, and Rhodobacteraceae. Both Acropora sp. exhibited lower bacterial diversity, species richness, and community evenness compared to more bleaching-resistant P. lutea and C. aspera. Different bleaching susceptibility among coral species was thus consistent with distinct microbiome community profiles. These profiles were conserved across bleached and unbleached colonies of all coral species. As this pattern could also reflect a parallel response of the microbiome to environmental changes, the detailed functional associations will need to be determined in future studies. Further understanding such microbiome-environmental interactions is likely critical to target more effective management within oceanically isolated reefs of Seychelles.

4.
BMC Biol ; 15(1): 117, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29216891

RESUMO

BACKGROUND: Climate change causes the breakdown of the symbiotic relationships between reef-building corals and their photosynthetic symbionts (genus Symbiodinium), with thermal anomalies in 2015-2016 triggering the most widespread mass coral bleaching on record and unprecedented mortality on the Great Barrier Reef. Targeted studies using specific coral stress indicators have highlighted the complexity of the physiological processes occurring during thermal stress, but have been unable to provide a clear mechanistic understanding of coral bleaching. RESULTS: Here, we present an extensive multi-trait-based study in which we compare the thermal stress responses of two phylogenetically distinct and widely distributed coral species, Acropora millepora and Stylophora pistillata, integrating 14 individual stress indicators over time across a simulated thermal anomaly. We found that key stress responses were conserved across both taxa, with the loss of symbionts and the activation of antioxidant mechanisms occurring well before collapse of the physiological parameters, including gross oxygen production and chlorophyll a. Our study also revealed species-specific traits, including differences in the timing of antioxidant regulation, as well as drastic differences in the production of the sulfur compound dimethylsulfoniopropionate during bleaching. Indeed, the concentration of this antioxidant increased two-fold in A. millepora after the corals started to bleach, while it decreased 70% in S. pistillata. CONCLUSIONS: We identify a well-defined cascading response to thermal stress, demarking clear pathophysiological reactions conserved across the two species, which might be central to fully understanding the mechanisms triggering thermally induced coral bleaching. These results highlight that bleaching is a conserved mechanism, but specific adaptations linked to the coral's antioxidant capacity drive differences in the sensitivity and thus tolerance of each coral species to thermal stress.


Assuntos
Antozoários/fisiologia , Antioxidantes/fisiologia , Dinoflagellida/fisiologia , Temperatura Alta/efeitos adversos , Estresse Fisiológico , Simbiose , Animais , Modelos Biológicos , Especificidade da Espécie , Análise de Sistemas
5.
Sci Rep ; 7(1): 2434, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28550297

RESUMO

Coral reefs are deteriorating under climate change as oceans continue to warm and acidify and thermal anomalies grow in frequency and intensity. In vitro experiments are widely used to forecast reef-building coral health into the future, but often fail to account for the complex ecological and biogeochemical interactions that govern reefs. Consequently, observations from coral communities under naturally occurring extremes have become central for improved predictions of future reef form and function. Here, we present a semi-enclosed lagoon system in New Caledonia characterised by diel fluctuations of hot-deoxygenated water coupled with tidally driven persistently low pH, relative to neighbouring reefs. Coral communities within the lagoon system exhibited high richness (number of species = 20) and cover (24-35% across lagoon sites). Calcification rates for key species (Acropora formosa, Acropora pulchra, Coelastrea aspera and Porites lutea) for populations from the lagoon were equivalent to, or reduced by ca. 30-40% compared to those from the reef. Enhanced coral respiration, alongside high particulate organic content of the lagoon sediment, suggests acclimatisation to this trio of temperature, oxygen and pH changes through heterotrophic plasticity. This semi-enclosed lagoon therefore provides a novel system to understand coral acclimatisation to complex climatic scenarios and may serve as a reservoir of coral populations already resistant to extreme environmental conditions.


Assuntos
Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Ecossistema , Água do Mar/química , Ácidos/química , Adaptação Fisiológica , Animais , Antozoários/classificação , Geografia , Concentração de Íons de Hidrogênio , Nova Caledônia , Oxigênio/análise , Oxigênio/química , Estações do Ano , Temperatura
6.
J Exp Biol ; 220(Pt 10): 1787-1791, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275004

RESUMO

Coral bleaching is intensifying with global climate change. Although the causes for these catastrophic events are well understood, the cellular mechanism that triggers bleaching is not well established. Our understanding of coral bleaching processes is hindered by the lack of robust methods for studying interactions between host and symbiont at the single-cell level. Here, we exposed coral explants to acute thermal stress and measured oxidative stress, more specifically, reactive oxygen species (ROS), in individual symbiont cells. Furthermore, we measured concentrations of dimethylsulphoniopropionate (DMSP) and dimethylsulphoxide (DMSO) to elucidate the role of these compounds in coral antioxidant function. This work demonstrates the application of coral explants for investigating coral physiology and biochemistry under thermal stress and delivers a new approach to study host-symbiont interactions at the microscale, allowing us to directly link intracellular ROS with DMSP and DMSO dynamics.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antozoários/química , Antioxidantes/metabolismo , Dimetil Sulfóxido/metabolismo , Dinoflagellida/química , Temperatura Alta/efeitos adversos , Estresse Oxidativo , Compostos de Sulfônio/metabolismo , Simbiose
7.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865302

RESUMO

Corals are among the most active producers of dimethylsulfoniopropionate (DMSP), a key molecule in marine sulfur cycling, yet the specific physiological role of DMSP in corals remains elusive. Here, we examine the oxidative stress response of three coral species (Acropora millepora, Stylophora pistillata and Pocillopora damicornis) and explore the antioxidant role of DMSP and its breakdown products under short-term hyposalinity stress. Symbiont photosynthetic activity declined with hyposalinity exposure in all three reef-building corals. This corresponded with the upregulation of superoxide dismutase and glutathione in the animal host of all three species. For the symbiont component, there were differences in antioxidant regulation, demonstrating differential responses to oxidative stress between the Symbiodinium subclades. Of the three coral species investigated, only A. millepora provided any evidence of the role of DMSP in the oxidative stress response. Our study reveals variability in antioxidant regulation in corals and highlights the influence life-history traits, and the subcladal differences can have on coral physiology. Our data expand on the emerging understanding of the role of DMSP in coral stress regulation and emphasizes the importance of exploring both the host and symbiont responses for defining the threshold of the coral holobiont to hyposalinity stress.


Assuntos
Antozoários/fisiologia , Glutationa/metabolismo , Salinidade , Compostos de Sulfônio/metabolismo , Superóxido Dismutase/metabolismo , Animais , Dinoflagellida/fisiologia , Especificidade da Espécie , Estresse Fisiológico , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA