Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309258

RESUMO

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Assuntos
Encéfalo , Microglia , Axônios , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Macrófagos/fisiologia , Microglia/patologia , Morfogênese
2.
Proc Natl Acad Sci U S A ; 120(33): e2301644120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549297

RESUMO

Sensory inputs are conveyed to distinct primary areas of the neocortex through specific thalamocortical axons (TCA). While TCA have the ability to reorient postnatally to rescue embryonic mistargeting and target proper modality-specific areas, how this remarkable adaptive process is regulated remains largely unknown. Here, using a mutant mouse model with a shifted TCA trajectory during embryogenesis, we demonstrated that TCA rewiring occurs during a short postnatal time window, preceded by a prenatal apoptosis of thalamic neurons-two processes that together lead to the formation of properly innervated albeit reduced primary sensory areas. We furthermore showed that preterm birth, through serotonin modulation, impairs early postnatal TCA plasticity, as well as the subsequent delineation of cortical area boundary. Our study defines a birth and serotonin-sensitive period that enables concerted adaptations of TCA to primary cortical areas with major implications for our understanding of brain wiring in physiological and preterm conditions.


Assuntos
Neocórtex , Nascimento Prematuro , Recém-Nascido , Camundongos , Animais , Humanos , Gravidez , Feminino , Neurônios/fisiologia , Serotonina , Córtex Cerebral/fisiologia , Recém-Nascido Prematuro , Axônios/fisiologia , Tálamo/fisiologia
3.
Neuron ; 110(21): 3458-3483, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36327895

RESUMO

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.


Assuntos
Microglia
4.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931085

RESUMO

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Assuntos
Doença de Alzheimer , Microglia , Envelhecimento , Doença de Alzheimer/genética , Animais , Encéfalo/patologia , Humanos , Macrófagos/patologia , Glicoproteínas de Membrana , Camundongos , Microglia/patologia , Receptores Imunológicos
5.
Nat Rev Neurosci ; 23(7): 395-410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35422526

RESUMO

It is often thought that the construction of cortical circuits occurs as the result of an elegantly designed process that unfolds sequentially as an animal develops until adult functional networks emerge. In reality, cortical circuits are shaped by evolutionary mechanisms, changes in developmental programmes driven by neuronal activity or epigenetic mechanisms and the need to adapt to the external world, and must pass through several important phases and timely checkpoints as they form. Some cortical cell types serve multiple functions during this developmental journey and are then reused (or 'recycled') to perform different functions in the adult cortex. Understanding the different stages of the cortical construction process and taking into account the ways in which cellular functions change across time and space is therefore essential if we are to build a comprehensive framework of cortical wiring in both health and disease.


Assuntos
Neurônios , Animais , Humanos
6.
Cell Rep ; 39(2): 110667, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417707

RESUMO

Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.


Assuntos
Interneurônios , Células Piramidais , Dendritos/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Tálamo
7.
Curr Opin Neurobiol ; 66: 125-134, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186879

RESUMO

Functioning of the neocortex relies on a complex architecture of circuits, as illustrated by the causal link between neocortical excitation/inhibition imbalance and the etiology of several neurodevelopmental disorders. An important entry point to cortical circuits is located in the superficial layer 1 (L1), which contains mostly local and long-range inputs and sparse inhibitory interneurons that collectively regulate cerebral functions. While increasing evidence indicates that L1 has important physiological roles, our understanding of how it wires up during development remains limited. Here, we provide an integrated overview of L1 anatomy, function and development, with a focus on transient early born Cajal-Retzius neurons, and highlight open questions key for progressing our understanding of this essential yet understudied layer of the cerebral cortex.


Assuntos
Neocórtex , Interneurônios , Neurônios
8.
Curr Opin Genet Dev ; 65: 186-194, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32823206

RESUMO

Microglia are instrumental to the development, function, homeostasis and pathologies of the central nervous system. These brain-resident macrophages arise early in embryogenesis and seed the developing brain, where they differentiate in response to cues provided by their neural niche. Throughout life, microglia regulate the neural tissue through a variety of cellular functions influenced by intrinsic and extrinsic factors. Despite their importance, we are only starting to uncover how microglia colonize the brain, adopt distinct functional states during development and the long-term impact of early alteration of their functions. This review highlights the latest knowledge on the ontogeny of microglia, their developmental trajectory and emerging roles. Characterizing these processes will be critical for our understanding of both brain physiology and pathologies.


Assuntos
Encéfalo/fisiologia , Homeostase , Microglia/fisiologia , Transtornos do Neurodesenvolvimento/patologia , Neurogênese , Animais , Encéfalo/citologia , Humanos , Macrófagos/citologia , Macrófagos/fisiologia , Microglia/citologia
9.
Cell ; 181(3): 557-573.e18, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259484

RESUMO

Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-ß, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-ß.


Assuntos
Encéfalo/citologia , Macrófagos/citologia , Microglia/citologia , Animais , Encéfalo/metabolismo , Linhagem da Célula , Camundongos , Monócitos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
11.
Cell Rep ; 28(5): 1119-1126.e4, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365857

RESUMO

The etiology of neurodevelopmental disorders is linked to defects in parvalbumin (PV)-expressing cortical interneurons and to prenatal immune challenges. Mouse models of maternal immune activation (MIA) and microglia deficits increase the postnatal density of PV interneurons, raising the question of their functional integration. Here, we show that MIA and embryonic depletion of macrophages including microglia have a two-step impact on PV interneurons wiring onto their excitatory target neurons in the barrel cortex. In adults, both challenges reduced the inhibitory drive from PV interneurons, as reported in neurodevelopmental disorders. In juveniles, however, we found an increased density of PV neurons, an enhanced strength of unitary connections onto excitatory cells, and an aberrant horizontal inhibition with a reduced lateral propagation of sensory inputs in vivo. Our results provide a comprehensive framework for understanding the impact of prenatal immune challenges onto the developmental trajectory of inhibitory circuits that leads to pathological brain wiring.


Assuntos
Interneurônios/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Neocórtex/embriologia , Animais , Inflamação/embriologia , Inflamação/patologia , Interneurônios/patologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Microglia/patologia , Neocórtex/patologia , Parvalbuminas/metabolismo
12.
Elife ; 82019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31891351

RESUMO

Programmed cell death and early activity contribute to the emergence of functional cortical circuits. While most neuronal populations are scaled-down by death, some subpopulations are entirely eliminated, raising the question of the importance of such demise for cortical wiring. Here, we addressed this issue by focusing on Cajal-Retzius neurons (CRs), key players in cortical development that are eliminated in postnatal mice in part via Bax-dependent apoptosis. Using Bax-conditional mutants and CR hyperpolarization, we show that the survival of electrically active subsets of CRs triggers an increase in both dendrite complexity and spine density of upper layer pyramidal neurons, leading to an excitation/inhibition imbalance. The survival of these CRs is induced by hyperpolarization, highlighting an interplay between early activity and neuronal elimination. Taken together, our study reveals a novel activity-dependent programmed cell death process required for the removal of transient immature neurons and the proper wiring of functional cortical circuits.


Assuntos
Apoptose/genética , Neurogênese/genética , Células Piramidais/metabolismo , Proteína X Associada a bcl-2/genética , Animais , Animais Recém-Nascidos , Polaridade Celular/genética , Córtex Cerebral/metabolismo , Estimulação Elétrica , Células Intersticiais de Cajal/metabolismo , Camundongos , Proteínas Mutantes/genética , Células Piramidais/patologia
13.
Nat Commun ; 9(1): 4725, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413696

RESUMO

The striatum controls behaviors via the activity of direct and indirect pathway projection neurons (dSPN and iSPN) that are intermingled in all compartments. While such cellular mosaic ensures the balanced activity of the two pathways, its developmental origin and pattern remains largely unknown. Here, we show that both SPN populations are specified embryonically and intermix progressively through multidirectional iSPN migration. Using conditional mutant mice, we found that inactivation of the dSPN-specific transcription factor Ebf1 impairs selective dSPN properties, including axon pathfinding, while molecular and functional features of iSPN were preserved. Ebf1 mutation disrupted iSPN/dSPN intermixing, resulting in an uneven distribution. Such architectural defect was selective of the matrix compartment, highlighting that intermixing is a parallel process to compartment formation. Our study reveals while iSPN/dSPN specification is largely independent, their intermingling emerges from an active migration of iSPN, thereby providing a novel framework for the building of striatal architecture.


Assuntos
Neostriado/fisiologia , Neurônios/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Embrião de Mamíferos/fisiologia , Deleção de Genes , Camundongos Endogâmicos C57BL , Neostriado/embriologia , Neurônios/citologia , Transativadores/deficiência , Transativadores/metabolismo
14.
Science ; 362(6411): 185-189, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309946

RESUMO

Cross-talk between the nervous and immune systems has been well described in the context of adult physiology and disease. Recent advances in our understanding of immune cell ontogeny have revealed a notable interplay between neurons and microglia during the prenatal and postnatal emergence of functional circuits. This Review focuses on the brain, where the early symbiotic relationship between microglia and neuronal cells critically regulates wiring, contributes to sex-specific differences in neural circuits, and relays crucial information from the periphery, including signals derived from the microbiota. These observations underscore the importance of studying neurodevelopment as part of a broader framework that considers nervous system interactions with microglia in a whole-body context.


Assuntos
Encéfalo/embriologia , Encéfalo/imunologia , Microglia/imunologia , Neurônios/imunologia , Animais , Apoptose , Comunicação Celular , Camundongos , Microbiota/fisiologia
15.
Development ; 145(19)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30177526

RESUMO

Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in Trio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.


Assuntos
Padronização Corporal , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Orientação de Axônios , Axônios/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tálamo/embriologia , Tálamo/metabolismo
17.
18.
Trends Neurosci ; 41(6): 332-334, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801526

RESUMO

In 2012, Schaefer et al. revealed that microglia regulate the emergence of functional connectivity by engulfing and selectively eliminating synapses in the retinogeniculate system. This synaptic pruning mechanism, which is activity dependent and relies on the complement cascade, has helped define microglia as a central contributor to normal wiring and to brain disorders.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Microglia/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Humanos , Microglia/citologia
19.
J Comp Neurol ; 526(3): 397-411, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28921616

RESUMO

In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits.


Assuntos
Vias Aferentes/fisiologia , Orientação de Axônios/genética , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Tegmento Pontino , Tálamo , Animais , Animais Recém-Nascidos , Toxina da Cólera/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Embrião de Mamíferos , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tegmento Pontino/citologia , Tegmento Pontino/embriologia , Tegmento Pontino/crescimento & desenvolvimento , Gravidez , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Tálamo/citologia , Tálamo/embriologia , Tálamo/crescimento & desenvolvimento , Fator Nuclear 1 de Tireoide/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Cell ; 172(3): 500-516.e16, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29275859

RESUMO

Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease.


Assuntos
Vida Livre de Germes , Microbiota , Microglia/citologia , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Transcriptoma , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Gravidez , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA