Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296923

RESUMO

Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.

2.
Bioorg Med Chem ; 81: 117193, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796126

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial neoplasm, affects the mouth and throat, and accounts for 90 % of oral cancers. Considering the associated morbidity with neck dissections and the limitation of existing therapeutic agents, the discovery and development of new anticancer drugs/drug candidates for oral cancer treatment are of the utmost need. In this context, reported here is the identification of fluorinated 2­styryl 4(3H)-quinazolinone as a promising hit for oral cancer. Preliminary studies indicate that the compound blocks the transition of G1 to S phase, thereby leading to arrest in the G1/S phase. Subsequent RNA-seq analysis revealed that the compound induces the activation of molecular pathways involved in apoptosis (such as TNF signalling through NF-κB, p53 pathways) and cell differentiation and suppresses the pathways of cellular growth and development (such as KRAS signaling) in CAL-27 cancer cells. It is noted that identified hit complies with a favorable range of ADME properties as per the computational analysis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Transdução de Sinais
3.
Cancer Lett ; 557: 216079, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36736532

RESUMO

Cancer is a pervasive, constantly evolving, and significant public health concern. The number of new cancer cases has risen dramatically in the last decades, making it one of the top causes of poor health and mortality worldwide. Although various treatment strategies, including surgery, radiation, and pharmaceutical therapies, have evolved into more sophisticated, precise methods, there is not much improvement in the cancer-related death toll. Consequently, natural product-based therapeutic discoveries have recently been considered an alternative approach. According to an estimate, one-third of the top twenty medications in today's market have a natural plant-product-based origin. Accordingly, primary prevention is an essential component of worldwide cancer control. This review provides an overview of the mechanisms of action of bioactive ingredients in natural dietary products that may contribute to the prevention and management of multiple malignancies.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Prognóstico , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico
4.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497402

RESUMO

N6-methyladenosine (m6A) is the most prevalent post-transcriptional RNA modification regulating cancer self-renewal. However, despite its functional importance and prognostic implication in tumorigenesis, the relevance of FTO, an m6A eraser, in pancreatic cancer (PC) remains elusive. Here, we establish the oncogenic role played by FTO overexpression in PC. FTO is upregulated in PC cells compared to normal human pancreatic ductal epithelial (HPDE) cells. Both RNAi depletion and CS1-mediated pharmacological inhibition of FTO caused a diminution of PC cell proliferation via cell cycle arrest in the G1 phase and p21cip1 and p27kip1 induction. While HPDE cells remain insensitive to CS1 treatment, FTO overexpression confers enhancements in growth, motility, and EMT transition, thereby inculcating tumorigenic properties in HPDE cells. Notably, shRNA-mediated FTO depletion in PC cells impairs their mobility and invasiveness, leading to EMT reversal. Mechanistically, this was associated with impaired tumorsphere formation and reduced expression of CSCs markers. Furthermore, FTO depletion in PC cells weakened their tumor-forming capabilities in nude mice; those tumors had increased apoptosis, decreased proliferation markers, and MET conversion. Collectively, our study demonstrates the functional importance of FTO in PC and the maintenance of CSCs via EMT regulation. Thus, FTO may represent an attractive therapeutic target for PC.

6.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188803, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36150564

RESUMO

Previously, we showed that knockout mice homozygous for deficiency of the mercapturic acid pathway (MAP) transporter protein, RLIP (RLIP-/-), are resistant to chemical carcinogenesis, inflammation, and metabolic syndrome (MetS). We also found that RLIP-/- mice are highly resistant to obesity caused by a high-fat diet (HFD). Interestingly, these studies showed that kinase, cytokine, and adipokine signaling that are characteristics of obesity were blocked despite the presence of increased oxidative stress in RLIP-/- mice. The deficiencies in obesity-inducing kinase, cytokine, and adipokine signaling were attributable to a lack of clathrin-dependent endocytosis (CDE), a process that is severely deficient in RLIP-/- mice. Because CDE is also necessary for carcinogenic signaling through EGF, WNT, TGFß and other cancer-specific peptide hormones, and because RLIP-/- mice are cancer-resistant, we reasoned that depletion of RLIP by an antisense approach should cause cancer regression in human cancer xenografts. This prediction has been confirmed in studies of xenografts from lung, kidney, prostate, breast, and pancreatic cancers and melanoma. Because these results suggested an essential role for RLIP in carcinogenesis, and because our studies have also revealed a direct interaction between p53 and RLIP, we reasoned that if RLIP played a central role in carcinogenesis, that development of lymphoma in p53-/- mice, which normally occurs by the time these mice are 6 months old, could be delayed or prevented by depleting RLIP. Recent studies described herein have confirmed this hypothesis, showing complete suppression of lymphomagenesis in p53-/- mice treated with anti-RLIP antisense until the age of 8 months. All control mice developed lymphoma in the thymus or testis as expected. These findings lead to a novel paradigm predicting that under conditions of increased oxidative stress, the consequent increased flux of metabolites in the MAP causes a proportional increase in the rate of CDE. Because CDE inhibits insulin and TNF signaling but promotes EGF, TGFß, and Wnt signaling, our model predicts that chronic stress-induced increases in RLIP (and consequently CDE) will induce insulin-resistance and enhance predisposition to cancer. Alternatively, generalized depletion of RLIP would antagonize the growth of malignant cells, and concomitantly exert therapeutic insulin-sensitizing effects. Therefore, this review focuses on how targeted depletion or inhibition of RLIP could provide a novel target for treating both obesity and cancer.


Assuntos
Insulinas , Neoplasias , Hormônios Peptídicos , Acetilcisteína/metabolismo , Adipocinas/metabolismo , Animais , Carcinogênese/genética , Carcinógenos , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Citocinas/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Lactente , Insulinas/metabolismo , Masculino , Camundongos , Obesidade/genética , Estresse Oxidativo , Hormônios Peptídicos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
Front Oncol ; 12: 855860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600365

RESUMO

Background: Naturally occurring dietary botanicals offer time-tested safety and anti-cancer efficacy, and a combination of certain compounds has shown to overcome the elusive chemotherapeutic resistance, which is of great significance for improving the mortality of patients with colorectal cancer (CRC). Accordingly, herein, we hypothesized that berberine (BBR) and oligomeric proanthocyanidins (OPCs) might regulate synergistically multiple oncogenic pathways to exert a superior anti-cancer activity in CRC. Methods: We performed a series of cell culture studies, followed by their interrogation in patient-derived organoids to evaluate the synergistic effect of BBR and OPCs against CRC. In addition, by performing whole genome transcriptomic profiling we identified the key targeted genes and pathways regulated by the combined treatment. Results: We first demonstrated that OPCs facilitated enhanced cellular uptake of BBR in CRC cells by measuring the fluorescent signal of BBR in cells treated individually or their combination. The synergism between BBR and OPCs were investigated in terms of their anti-tumorigenic effect on cell viability, clonogenicity, migration, and invasion. Furthermore, the combination treatment potentiated the cellular apoptosis in an Annexin V binding assay. Transcriptomic profiling identified oncogene MYB in PI3K-AKT signaling pathway might be critically involved in the anti-tumorigenic properties of the combined treatment. Finally, we successfully validated these findings in patient-derived CRC tumor organoids. Conclusions: Collectively, we for the first time demonstrate that a combined treatment of BBR and OPCs synergistically promote the anti-tumorigenic properties in CRC possibly through the regulation of cellular apoptosis and oncogene MYB in the PI3K-Akt signaling pathway.

9.
Cancer Res ; 80(23): 5166-5173, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32994205

RESUMO

Non-small cell lung cancer (NSCLC) is the most frequent subtype of lung cancer and remains a highly lethal malignancy and one of the leading causes of cancer-related deaths worldwide. Mutant KRAS is the prevailing oncogenic driver of lung adenocarcinoma, the most common histologic form of NSCLC. In this study, we examined the role of PKCϵ, an oncogenic kinase highly expressed in NSCLC and other cancers, in KRAS-driven tumorigenesis. Database analysis revealed an association between PKCϵ expression and poor outcome in patients with lung adenocarcinoma specifically harboring KRAS mutations. A PKCϵ-deficient, conditionally activatable allele of oncogenic Kras (LSL-KrasG12D ;PKCϵ-/- mice) demonstrated the requirement of PKCϵ for Kras-driven lung tumorigenesis in vivo, which was consistent with impaired transformed growth reported in PKCϵ-deficient KRAS-dependent NSCLC cells. Moreover, PKCϵ-knockout mice were found to be less susceptible to lung tumorigenesis induced by benzo[a]pyrene, a carcinogen that induces mutations in Kras. Mechanistic analysis using RNA sequencing revealed little overlap for PKCϵ and KRAS in the control of genes and biological pathways relevant in NSCLC, suggesting that a permissive role of PKCϵ in KRAS-driven lung tumorigenesis may involve nonredundant mechanisms. Our results thus, highlight the relevance and potential of targeting PKCϵ for lung cancer therapeutics. SIGNIFICANCE: These findings demonstrate that KRAS-mediated tumorigenesis requires PKCϵ expression and highlight the potential for developing PKCϵ-targeted therapies for oncogenic RAS-driven malignancies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteína Quinase C-épsilon/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Animais , Benzo(a)pireno/toxicidade , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Proteína Quinase C-épsilon/genética
10.
Oncotarget ; 11(20): 1832-1845, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32499869

RESUMO

Exosomes facilitate cross-talk amongst tumor cells, and thus also possess the potential to influence tumor-microenvironment and chemo-resistance. miRNAs, the important constituent of exosomes, are often dysregulated in cancer. They have been shown to play an essential role in tumor progression, metastasis, invasion, and resistance developed against different therapies. Acquisition of cisplatin-chemoresistance remains a major hurdle in the effective treatment of oral squamous cell carcinoma (OSCC). In this study, we demonstrate the importance of exosome-mediated miR-30a transfer in conferring cisplatin sensitivity in the otherwise resistant OSCC cells. Notably, miR-30a was found to be significantly reduced in exosomes isolated from the serum of OSCC patients, especially those having disease-recurrence, post cisplatin treatment. In conjunction with the findings in clinical samples, decreased miR-30a expression was observed in vitro in the cisplatin-resistant cultured OSCC cells compared to the cisplatin-sensitive cells. Besides, we identified Beclin1, an autophagy-related marker, as a target of miR-30a and found it to be overexpressed in cisplatin-resistant OSCC cells, thus indicating at its possible negative-regulation by miR30a. Exosomes from the cisplatin-resistant cells that have been transfected with miR-30a mimics, when delivered to the naïve cisplatin-resistant cells, caused not only the significant enhancements in miR-30a expression but also a concomitant decrease in Beclin1 and Bcl2 expression (autophagic and anti-apoptotic marker). More importantly, this together resulted in the sensitization of cisplatin-resistant cells. Thus, our study highlighted the role of exosomal-mediated miR-30a transfer in regaining sensitivity of the cisplatin-resistant OSCC cells via Beclin1 and Bcl2 regulation and hence suggests at its potential therapeutic role.

11.
Oncotarget ; 11(13): 1157-1171, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32284792

RESUMO

Cisplatin is used as chemotherapeutic drug for oral squamous cell carcinoma (OSCC). However, OSCC cells develop resistance following long-term cisplatin exposure. Resistance against cisplatin chemo-therapy is accredited to the process of epithelial-to-mesenchymal transition, which in-turn has been linked to tumor-recurrence. miRNA deregulation, a common event in cancer, plays contributory role in chemo-resistance. Exosomes acts as the natural cargo for miRNA and facilitates inter-cell communication in the tumor micro-environment. Hence, exosomal-mediated miRNA transference may play essential role in drug resistance and serve as a target for cancer-therapy. miR-155 upregulation in OSCC has been described, however, its relevance in the observed chemo-resistance is unclear and also, if exosomes have any role in miR-155 regulation remain elusive. In the present study, we document for the first time the critical role of exosomes in mediating increments in miR-155 expression in OSCC cells that have acquired cisplatin resistance (cisRes cells). Importantly, exosomal transfer from cisRes to the cisplatin sensitive (cisSens) cells was found to confer significant miR-155 induction in the recipient cisSens cells. Restoration of miR-155 expression in cisSens cells following miR-155 mimics treatment led to epithelial to mesenchymal transition, enhancements in their migratory potential as well as acquisition of resistant phenotype. Notably, similar augmentations in the migratory and chemo-resistant traits were seen upon delivery of exosomes from cisRes to the recipient cisSens cells. Overall, our findings establish the significance of exosomal-mediated miR-155 shuttling in the cisplatin-chemoresistance, commonly observed in OSCC cells, thereby providing rationale for targeting miR-155 signalling for oral cancer therapy.

12.
ISA Trans ; 100: 251-263, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31955950

RESUMO

The conventional maximum power point tracking (MPPT) algorithm shows best performance under uniform insolation but when photovoltaic (PV) array is partially irradiated, the Power vs Voltage (P-V) plot consists of multiple local maxima power point (LMPP) and one global maxima power point (GMPP). The conventional MPPT algorithm may track local peak and fluctuate around it, resulting in lower power tracking. To eradicate this drawback of conventional algorithm, the solar PV system requires the synthesis of modified controller which is able to discriminate between local and global peak point. Along with implementing modified MPPT controller, to minimise the adverse effect of partial shading on PV system, different PV array arrangements like series-parallel (SP), honey comb (HC), total cross tied (TCT) etc. may be used. Author(s) in the present study, has proposed asymmetrical interval type-2 fuzzy logic control (IT-2 AFLC) based MPP algorithm for tracking global peak in partial shading condition (PSC) with different PV array arrangements. The presented algorithm has been compared with other approaches viz. perturb & observe (P&O) and type-1(T-1) FLC for GMPP tracking, fill factor, shading losses, mismatch loss and efficiency to establish its superiority. For evaluating the efficiency of different algorithms, the EN50530 MPPT efficiency test has been performed under dynamic condition. The proposed algorithm has been developed under MATLAB/Simulink environment.

13.
Oncogene ; 37(34): 4735-4749, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29765153

RESUMO

The pro-oncogenic kinase PKCε is overexpressed in human prostate cancer and cooperates with loss of the tumor suppressor Pten for the development of prostatic adenocarcinoma. However, the effectors driving PKCε-mediated phenotypes remain poorly defined. Here, using cellular and mouse models, we showed that PKCε overexpression acts synergistically with Pten loss to promote NF-κB activation and induce cyclooxygenase-2 (COX-2) expression, phenotypic traits which are also observed in human prostate tumors. Targeted disruption of PKCε from prostate cancer cells impaired COX-2 induction and PGE2 production. Notably, COX-2 inhibitors selectively killed prostate epithelial cells overexpressing PKCε, and this ability was greatly enhanced by Pten loss. Long-term COX-2 inhibition markedly reduced adenocarcinoma formation, as well as angiogenesis in a mouse model of prostate-specific PKCε expression and Pten loss. Overall, our results provide strong evidence for the involvement of the canonical NF-κB pathway and its target gene COX2 as PKCε effectors, and highlight the potential of PKCε as a useful biomarker for the use of COX inhibition for chemopreventive and/or chemotherapeutic purposes in prostate cancer.


Assuntos
Carcinogênese/genética , Ciclo-Oxigenase 2/genética , Neoplasias da Próstata/genética , Proteína Quinase C-épsilon/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , NF-kappa B/genética , Próstata/patologia , Neoplasias da Próstata/patologia , Transdução de Sinais/genética
14.
J Biol Chem ; 293(22): 8330-8341, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636415

RESUMO

Diacylglycerol (DAG) is a key lipid second messenger downstream of cellular receptors that binds to the C1 domain in many regulatory proteins. Protein kinase C (PKC) isoforms constitute the most prominent family of signaling proteins with DAG-responsive C1 domains, but six other families of proteins, including the chimaerins, Ras-guanyl nucleotide-releasing proteins (RasGRPs), and Munc13 isoforms, also play important roles. Their significant involvement in cancer, immunology, and neurobiology has driven intense interest in the C1 domain as a therapeutic target. As with other classes of targets, however, a key issue is the establishment of selectivity. Here, using [3H]phorbol 12,13-dibutyrate ([3H]PDBu) competition binding assays, we found that a synthetic DAG-lactone, AJH-836, preferentially binds to the novel PKC isoforms PKCδ and PKCϵ relative to classical PKCα and PKCßII. Assessment of intracellular translocation, a hallmark for PKC activation, revealed that AJH-836 treatment stimulated a striking preferential redistribution of PKCϵ to the plasma membrane relative to PKCα. Moreover, unlike with the prototypical phorbol ester phorbol 12-myristate 13-acetate (PMA), prolonged exposure of cells to AJH-836 selectively down-regulated PKCδ and PKCϵ without affecting PKCα expression levels. Biologically, AJH-836 induced major changes in cytoskeletal reorganization in lung cancer cells, as determined by the formation of membrane ruffles, via activation of novel PKCs. We conclude that AJH-836 represents a C1 domain ligand with PKC-activating properties distinct from those of natural DAGs and phorbol esters. Our study supports the feasibility of generating selective C1 domain ligands that promote novel biological response patterns.


Assuntos
Diglicerídeos/química , Lactonas/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Células A549 , Ligação Competitiva , Células HeLa , Humanos , Ligantes , Ligação Proteica , Transporte Proteico , Especificidade por Substrato
15.
Cell Rep ; 19(2): 375-388, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402859

RESUMO

PKCε, an oncogenic member of the PKC family, is aberrantly overexpressed in epithelial cancers. To date, little is known about functional interactions of PKCε with other genetic alterations, as well as the effectors contributing to its tumorigenic and metastatic phenotype. Here, we demonstrate that PKCε cooperates with the loss of the tumor suppressor Pten for the development of prostate cancer in a mouse model. Mechanistic analysis revealed that PKCε overexpression and Pten loss individually and synergistically upregulate the production of the chemokine CXCL13, which involves the transcriptional activation of the CXCL13 gene via the non-canonical nuclear factor κB (NF-κB) pathway. Notably, targeted disruption of CXCL13 or its receptor, CXCR5, in prostate cancer cells impaired their migratory and tumorigenic properties. In addition to providing evidence for an autonomous vicious cycle driven by PKCε, our studies identified a compelling rationale for targeting the CXCL13-CXCR5 axis for prostate cancer treatment.


Assuntos
Quimiocina CXCL13/genética , PTEN Fosfo-Hidrolase/biossíntese , Neoplasias da Próstata/genética , Proteína Quinase C-épsilon/biossíntese , Receptores CXCR5/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CXCL13/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , NF-kappa B , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/patologia , Proteína Quinase C-épsilon/genética , Receptores CXCR5/biossíntese , Transdução de Sinais
16.
Oncotarget ; 7(32): 51335-51348, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27351228

RESUMO

The Rac nucleotide Exchange Factor (Rac-GEF) P-Rex1 is highly expressed in breast cancer, specifically in the luminal subtype, and is an essential mediator of actin cytoskeleton reorganization and cell migratory responses induced by stimulation of ErbB and other tyrosine-kinase receptors. Heregulin (HRG), a growth factor highly expressed in mammary tumors, causes the activation of P-Rex1 and Rac1 in breast cancer cells via ErbB3, leading to a motile response. Since there is limited information about P-Rex1 downstream effectors, we carried out a microarray analysis to identify genes regulated by this Rac-GEF after stimulation of ErbB3 with HRG. In T-47D breast cancer cells, HRG treatment caused major changes in gene expression, including genes associated with motility, adhesion, invasiveness and metastasis. Silencing P-Rex1 expression from T-47D cells using RNAi altered the induction and repression of a subset of HRG-regulated genes, among them genes associated with extracellular matrix organization, migration, and chemotaxis. HRG induction of MMP10 (matrix metalloproteinase 10) was found to be highly sensitive both to P-Rex1 depletion and inhibition of Rac1 function by the GTPase Activating Protein (GAP) ß2-chimaerin, suggesting the dependence of the P-Rex1/Rac1 pathway for the induction of genes critical for breast cancer invasiveness. Notably, there is a significant association in the expression of P-Rex1 and MMP10 in human luminal breast cancer, and their co-expression is indicative of poor prognosis.


Assuntos
Neoplasias da Mama/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Metaloproteinase 10 da Matriz/genética , Transcriptoma , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Análise em Microsséries , Prognóstico
17.
J Biol Chem ; 289(28): 19823-38, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24825907

RESUMO

Overexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼ 1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells. A comprehensive deletional analysis established two regions rich in Sp1 and STAT1 sites located between -777 and -105 bp (region A) and -921 and -796 bp (region B), respectively, as responsible for the high transcriptional activity observed in cancer cells. A more detailed mutagenesis analysis followed by EMSA and ChIP identified Sp1 sites in positions -668/-659 and -269/-247 as well as STAT1 sites in positions -880/-869 and -793/-782 as the elements responsible for elevated promoter activity in breast cancer cells relative to normal mammary epithelial cells. RNAi silencing of Sp1 and STAT1 in breast cancer cells reduced PKCϵ mRNA and protein expression, as well as PRKCE promoter activity. Moreover, a strong correlation was found between PKCϵ and phospho-Ser-727 (active) STAT1 levels in breast cancer cells. Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteína Quinase C-épsilon/biossíntese , Elementos de Resposta , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteína Quinase C-épsilon/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição Sp1/genética
18.
PLoS One ; 8(6): e67319, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826267

RESUMO

BACKGROUND: Activation of protein kinase C (PKC), a family of serine-threonine kinases widely implicated in cancer progression, has major impact on gene expression. In a recent genome-wide analysis of prostate cancer cells we identified distinctive gene expression profiles controlled by individual PKC isozymes and highlighted a prominent role for PKCδ in transcriptional activation. PRINCIPAL FINDINGS: Here we carried out a thorough bioinformatics analysis to dissect transcriptional networks controlled by PKCα, PKCδ, and PKCε, the main diacylglycerol/phorbol ester PKCs expressed in prostate cancer cells. Despite the remarkable differences in the patterns of transcriptional responsive elements (REs) regulated by each PKC, we found that c-Rel represents the most frequent RE in promoters regulated by all three PKCs. In addition, promoters of PKCδ-regulated genes were particularly enriched with REs for CREB, NF-E2, RREB, SRF, Oct-1, Evi-1, and NF-κB. Most notably, by using transcription factor-specific RNAi we were able to identify subsets of PKCδ-regulated genes modulated by c-Rel and CREB. Furthermore, PKCδ-regulated genes condensed under the c-Rel transcriptional regulation display significant functional interconnections with biological processes such as angiogenesis, inflammatory response, and cell motility. CONCLUSION/SIGNIFICANCE: Our study identified candidate transcription factors in the promoters of PKC regulated genes, in particular c-Rel was found as a key transcription factor in the control of PKCδ-regulated genes. The deconvolution of PKC-regulated transcriptional networks and their nodes may greatly help in the identification of PKC effectors and have significant therapeutics implications.


Assuntos
Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Elementos Reguladores de Transcrição , Apoptose , Humanos , Isoenzimas , Masculino , Neoplasias da Próstata/enzimologia , Proteínas Proto-Oncogênicas c-rel/genética , Ativação Transcricional , Células Tumorais Cultivadas
19.
J Biol Chem ; 287(44): 37570-82, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22955280

RESUMO

Protein kinase C ε (PKCε) has emerged as an oncogenic kinase and plays important roles in cell survival, mitogenesis and invasion. PKCε is up-regulated in most epithelial cancers, including prostate, breast, and lung cancer. Here we report that PKCε is an essential mediator of NF-κB activation in prostate cancer cells. A strong correlation exists between PKCε overexpression and NF-κB activation status in prostate cancer cells. Moreover, transgenic overexpression of PKCε in the mouse prostate causes preneoplastic lesions that display significant NF-κB hyperactivation. PKCε RNAi depletion or inhibition in prostate cancer cells diminishes NF-κB translocation to the nucleus with subsequent impairment of both activation of NF-κB transcription and induction of NF-κB responsive genes in response to the proinflammatory cytokine tumor necrosis factor α (TNFα). On the other hand, PKCε overexpression in normal prostate cells enhances activation of the NF-κB pathway. A mechanistic analysis revealed that TNFα activates PKCε via a C1 domain/diacylglycerol-dependent mechanism that involves phosphatidylcholine-phospholipase C. Moreover, PKCε facilitates the assembly of the TNF receptor-I signaling complex to trigger NF-κB activation. Our studies identified a molecular link between PKCε and NF-κB that controls key responses implicated in prostate cancer progression.


Assuntos
Neoplasias da Próstata/enzimologia , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Proteínas I-kappa B/metabolismo , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Masculino , Camundongos , Camundongos Transgênicos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Neoplasias da Próstata/metabolismo , Ligação Proteica , Proteína Quinase C-épsilon/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Fosfolipases Tipo C/metabolismo
20.
Cell Cycle ; 10(2): 268-77, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21224724

RESUMO

It is well established that protein kinase C (PKC) isozymes play distinctive roles in mitogenic and survival signaling as well as in cancer progression. PKCε, the product of the PRKCE gene, is up-regulated in various types of cancers including prostate, lung and breast cancer. To address a potential role for PKCs in prostate cancer progression we generated three mouse transgenic lines expressing PKCα, PKCδ, or PKCε in the prostate epithelium under the control of the rat probasin (PB) promoter. Whereas PB-PKCε and PB-PKCδ mice did not show any evident phenotype, PB-PKCε mice developed prostate hyperplasia as well as prostate intraepithelial neoplasia (PIN) that displayed enhanced phospho-Akt, phospho-S6, and phospho-Stat3 levels, as well as enhanced resistance to apoptotic stimuli. PKCε overexpression was insufficient to drive neoplastic changes in the mouse prostate. Notably, overexpression of PKCε by adenoviral means in normal immortalized RWPE-1 prostate cells confers a growth advantage and hyperactivation of Erk and Akt. Our results argue for a causal link between PKCε overexpression and prostate cancer development.


Assuntos
Lesões Pré-Cancerosas/enzimologia , Neoplasia Prostática Intraepitelial/enzimologia , Neoplasias da Próstata/enzimologia , Proteína Quinase C-épsilon/metabolismo , Proteína de Ligação a Androgênios/genética , Animais , Apoptose , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Lesões Pré-Cancerosas/patologia , Regiões Promotoras Genéticas , Próstata/enzimologia , Próstata/patologia , Hiperplasia Prostática/patologia , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA