Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Med Genomics ; 16(1): 312, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041144

RESUMO

BACKGROUND: Friedreich ataxia is the most common inherited ataxia in Europe and is mainly caused by biallelic pathogenic expansions of the GAA trinucleotide repeat in intron 1 of the FXN gene that lead to a decrease in frataxin protein levels. Rarely, affected individuals carry either a large intragenic deletion or whole-gene deletion of FXN on one allele and a full-penetrance expanded GAA repeat on the other allele. CASE PRESENTATION: We report here a patient that presented the typical clinical features of FRDA and genetic analysis of FXN intron 1 led to the assumption that the patient carried the common biallelic expansion. Subsequently, parental sample testing led to the identification of a novel intragenic deletion involving the 5'UTR upstream region and exons 1 and 2 of the FXN gene by MLPA. CONCLUSIONS: With this case, we want to raise awareness about the potentially higher prevalence of intragenic deletions and underline the essential role of parental sample testing in providing accurate genetic counselling.


Assuntos
Ataxia de Friedreich , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Expansão das Repetições de Trinucleotídeos , Fenótipo , Éxons , Íntrons
2.
Cancers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900216

RESUMO

BACKGROUND: Pharmacogenetics is a personalized medicine tool that aims to optimize treatments by adapting them to each individual's genetics, maximizing their efficacy while minimizing their toxicity. Infants with cancer are especially vulnerable, and their co-morbidities have vital repercussions. The study of their pharmacogenetics is new in this clinical field. METHODS: A unicentric, ambispective study of a cohort of infants receiving chemotherapy (from January 2007 to August 2019). The genotypes of 64 patients under 18 months of age were correlated with severe drug toxicities and survival. A pharmacogenetics panel was configured based on PharmGKB, drug labels, and international experts' consortiums. RESULTS: Associations between SNPs and hematological toxicity were found. Most meaningful were: MTHFR rs1801131 GT increasing the anemia risk (OR 1.73); rs1517114 GC, XPC rs2228001 GT, increasing neutropenia risk (OR 1.50 and 4.63); ABCB1 rs1045642 AG, TNFRSF11B rs2073618 GG, CYP2B6 rs4802101 TC and SOD2 rs4880 GG increasing thrombocytopenia risk (OR 1.70, 1.77, 1.70, 1.73, respectively). Regarding survival, MTHFR rs1801133 GG, TNFRSF11B rs2073618 GG, XPC rs2228001 GT, CYP3A4 rs2740574 CT, CDA rs3215400 del.del, and SLC01B1 rs4149015 GA were associated with lower overall survival probabilities (HR 3.12, 1.84, 1.68, 2.92, 1.90, and 3.96, respectively). Lastly, for event-free survival, SLC19A1 rs1051266 TT and CDA rs3215400 del.del increased the relapse probability (HR 1.61 and 2.19, respectively). CONCLUSIONS: This pharmacogenetic study is a pioneer in dealing with infants under 18 months of age. Further studies are needed to confirm the utility of the findings in this work to be used as predictive genetic biomarkers of toxicity and therapeutic efficacy in the infant population. If confirmed, their use in therapeutic decisions could improve the quality of life and prognosis of these patients.

3.
Eur J Hum Genet ; 30(11): 1288-1291, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35459888

RESUMO

CTCF germline mutations have been related to MRD21. We report the first bilateral Wilms tumor suffered by a MRD21 patient carrying an unreported CTCF missense variant in a zinc finger domain of CTCF protein. We found that germline heterozygous variant I446K became homozygous in the tumor due to a loss of heterozygosity rearrangement affecting the whole q arm on chromosome 16. Our findings propose CTCF I446K variant as a link between MRD21 and Wilms tumor predisposition.


Assuntos
Deficiência Intelectual , Neoplasias Renais , Tumor de Wilms , Humanos , Tumor de Wilms/genética , Dedos de Zinco/genética , Neoplasias Renais/genética , Células Germinativas
4.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454892

RESUMO

A suitable diagnostic classification of myeloid neoplasms and acute leukemias requires testing for a large number of molecular biomarkers. Next-generation sequencing is a technology able to integrate identification of the vast majority of them in a single test. This manuscript includes the design, analytical validation and clinical feasibility evaluation of a molecular diagnostic kit for onco-hematological diseases. It is based on sequencing of the coding regions of 76 genes (seeking single-nucleotide variants, small insertions or deletions and CNVs), as well as the search for fusions in 27 target genes. The kit has also been designed to detect large CNVs throughout the genome by including specific probes and employing a custom bioinformatics approach. The analytical and clinical feasibility validation of the Haematology OncoKitDx panel has been carried out from the sequencing of 170 patient samples from 6 hospitals (in addition to the use of commercial reference samples). The analytical validation showed sensitivity and specificity close to 100% for all the parameters evaluated, with a detection limit of 2% for SNVs and SVs, and 20% for CNVs. Clinically relevant mutations were detected in 94% of all patients. An analysis of the correlation between the genetic risk classification of AML (according to ELN 2017) established by the hospitals and that obtained by the Haematology OncoKitDx panel showed an almost perfect correlation (K = 0.94). Among the AML samples with a molecular diagnosis, established by the centers according to the WHO, the Haematology OncoKitDx analysis showed the same result in 97% of them. The panel was able to adequately differentiate between MPN subtypes and also detected alterations that modified the diagnosis (FIP1L1-PDGFRA). Likewise, the cytogenetic risk derived from the CNV plot generated by the NGS panel correlated substantially with the results of the conventional karyotype (K = 0.71) among MDS samples. In addition, the panel detected the main biomarkers of prognostic value among patients with ALL. This validated solution enables a reliable analysis of a large number of molecular biomarkers from a DNA sample in a single assay.

5.
Mod Pathol ; 35(8): 1066-1074, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35177782

RESUMO

Metaplastic breast carcinomas are a rare and heterogeneous group of tumors (0.5-2%). They are mainly triple negative tumors but they present poorer chemotherapy responses and worse prognosis than other triple negative tumors. The aim of our study was to characterize the molecular profile and tumor evolution in matched (primary-relapse) tumor samples from patients with early-stage metaplastic breast carcinomas who had disease recurrence/progression. We performed genomic profiling of tumor biopsies at least from two different time points of their tumor evolution. Tumor samples were analyzed by DNA-Next Generation Sequencing (Illumina 2 x 75bp) using the Action OncoKitDX panel (Imegen-Health in Code group), which includes point mutations in 50 genes, CNVs, and fusion genes. Only pathogenic and likely pathogenic variants were considered for analysis and they were categorized following the ComPerMed criteria. We analyzed 21 matched tumor samples (8 primary and 13 relapse/progression samples). Genomic profiling of matched tumor samples revealed that mutations present in primary tumors are generally maintained in the relapse/disease progression. We did not find a significant increase in point mutations between primary and relapse/progression samples, although gene amplifications were found more frequently in relapse/progression samples. Tumor samples harbored high frequency of TP53 (100%) and TERT promoter (29%) mutations, and of MYC amplifications (80% of which in relapse/progression samples). No PI3KCA mutations were found, but PTEN variations were enriched in 38% of samples (10% mutations and 28% deletions). FGFR1 amplifications were identified in 13% of samples (primary tumor only). Neither ERBB2 nor EGFR gene amplifications were detected. The most frequent pathogenic alterations occurred in cycle regulation's genes, including TP53 and TERT promoter mutations, and MYC amplifications. Relapse/progression samples were highly enriched for MYC amplification. Larger studies are required to better characterize these tumors, and identify new strategies to improve the prognosis of these patients.


Assuntos
Neoplasias da Mama , Recidiva Local de Neoplasia , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Feminino , Amplificação de Genes , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Recidiva Local de Neoplasia/genética
6.
Cancers (Basel) ; 13(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34771502

RESUMO

Knowledge about genetic predisposition to pediatric cancer is constantly expanding. The categorization and clinical management of the best-known syndromes has been refined over the years. Meanwhile, new genes for pediatric cancer susceptibility are discovered every year. Our current work shares the results of genetically studying the germline of 170 pediatric patients diagnosed with cancer. Patients were prospectively recruited and studied using a custom panel, OncoNano V2. The well-categorized predisposing syndromes incidence was 9.4%. Likely pathogenic variants for predisposition to the patient's tumor were identified in an additional 5.9% of cases. Additionally, a high number of pathogenic variants associated with recessive diseases was detected, which required family genetic counseling as well. The clinical utility of the Jongmans MC tool was evaluated, showing a high sensitivity for detecting the best-known predisposing syndromes. Our study confirms that the Jongmans MC tool is appropriate for a rapid assessment of patients; however, the updated version of Ripperger T criteria would be more accurate. Meaningfully, based on our findings, up to 9.4% of patients would present genetic alterations predisposing to cancer. Notably, up to 20% of all patients carry germline pathogenic or likely pathogenic variants in genes related to cancer and, thereby, they also require expert genetic counseling. The most important consideration is that the detection rate of genetic causality outside Jongmans MC et al. criteria was very low.

7.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575974

RESUMO

Pharmacogenetics is one of the cornerstones of Personalized Precision Medicine that needs to be implemented in the routine of our patients' clinical management in order to tailor their therapies as much as possible, with the aim of maximizing efficacy and minimizing toxicity. This is of great importance, especially in pediatric cancer and even more in complex malignancies such as neuroblastoma, where the rates of therapeutic success are still below those of many other types of tumors. The studies are mainly focused on germline genetic variants and in the present review, state of the art is presented: which are the variants that have a level of evidence high enough to be implemented in the clinic, and how to distinguish them from the ones that still need validation to confirm their utility. Further aspects as relevant characteristics regarding ontogeny and future directions in the research will also be discussed.


Assuntos
Antineoplásicos/uso terapêutico , Neuroblastoma/tratamento farmacológico , Farmacogenética/tendências , Medicina de Precisão/tendências , Antineoplásicos/efeitos adversos , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Pediatria/tendências
8.
Int J Retina Vitreous ; 7(1): 50, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479642

RESUMO

BACKGROUND: Patients with 13q-syndrome are at risk of retinoblastoma when the RB1 gene, located in the chromosomal band 13q14.2, is deleted. This syndrome is frequently associated with congenital malformations and developmental delay, although these signs could be mild. Mosaic 13q-deletion patients have been previously reported in the literature; their phenotype is variable, and they may not be recognized. CASE PRESENTATION: Retinoblastoma diagnosed in a child with 13q-mosaicism confirmed in blood, oral mucosa, healthy retina and retinoblastoma. A second RB1 hit is present exclusively in the retinoblastoma sample (RB1 c.958C>T p.Arg320Ter). Other detected molecular events in retinoblastoma are 6p12.3pter gain and 6q25.3qter loss. Clinical examination is unremarkable except for clinodactyly of the right fifth finger. DISCUSSION AND CONCLUSIONS: We describe a case of mosaic 13q deletion syndrome affected by retinoblastoma. Molecular data obtained from the tumor analysis are similar to previous data available about this malignancy. High clinical suspicion is essential for an adequate diagnosis of mosaic cases.

9.
J Pers Med ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947144

RESUMO

The increasing identification of driver oncogenic alterations and progress of targeted therapies addresses the need of comprehensive alternatives to standard molecular methods. The translation into clinical practice of next-generation sequencing (NGS) panels is actually challenged by the compliance of high quality standards for clinical accreditation. Herein, we present the analytical and clinical feasibility study of a hybridization capture-based NGS panel (Action OncoKitDx) for the analysis of somatic mutations, copy number variants (CNVs), fusions, pharmacogenetic SNPs and Microsatellite Instability (MSI) determination in formalin-fixed paraffin-embedded (FFPE) tumor samples. A total of 64 samples were submitted to extensive analytical validation for the identification of previously known variants. An additional set of 166 tumor and patient-matched normal samples were sequenced to assess the clinical utility of the assay across different tumor types. The panel demonstrated good specificity, sensitivity, reproducibility, and repeatability for the identification of all biomarkers analyzed and the 5% limit of detection set was validated. Among the clinical cohorts, the assay revealed pathogenic genomic alterations in 97% of patient cases, and in 82.7%, at least one clinically relevant variant was detected. The validation of accuracy and robustness of this assay supports the Action OncoKitDx's utility in adult solid tumors.

10.
J Pers Med ; 11(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916788

RESUMO

Background: Bone and soft-tissue sarcomas represent 13% of all paediatric malignancies. International contributions to introduce next-generation sequencing (NGS) approaches into clinical application are currently developing. We present the results from the Precision Medicine program for children with sarcomas at a reference centre. Results: Samples of 70 paediatric sarcomas were processed for histopathological analysis, reverse transcriptase polymerase chain reaction (RT-PCR) and next-generation sequencing (NGS) with a consensus gene panel. Pathogenic alterations were reported and, if existing, targeted recommendations were translated to the clinic. Seventy paediatric patients with sarcomas from 10 centres were studied. Median age was 11.5 years (range 1-18). Twenty-two (31%) had at least one pathogenic alteration by NGS. Thirty pathogenic mutations in 18 different genes were detected amongst the 22 patients. The most frequent alterations were found in TP53, followed by FGFR4 and CTNNB1. Combining all biological studies, 18 actionable variants were detected and six patients received targeted treatment observing a disease control rate of 78%. Extrapolating the results to the whole cohort, 23% of the patients would obtain clinical benefit from this approach. Conclusions: Paediatric sarcomas have a different genomic landscape when compared to adult cohorts. Incorporating NGS targets into paediatric sarcomas' therapy is feasible and allows personalized treatments with clinical benefit in the relapse setting.

11.
Int J Mol Sci ; 21(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295184

RESUMO

Single nucleotide polymorphisms (SNPs) in Pharmacogenetics can play an important role in the outcomes of the chemotherapy treatment in Neuroblastoma, helping doctors maximize efficacy and minimize toxicity. Employing AgenaBioscience MassArray, 96 SNPs were genotyped in 95 patients looking for associations of SNP with response to induction therapy (RIT) and grade 3-4 toxicities, in High Risk patients. Associations of SNPs with overall (OS) and event-free (EFS) survival in the whole cohort were also explored. Cox and logistic regression models with Elastic net penalty were employed. Association with grade 3-4 gastrointestinal and infectious toxicities was found for 8 different SNPs. Better RIT was correlated with rs726501 AG, rs3740066 GG, rs2010963 GG and rs1143684 TT (OR = 2.87, 1.79, 1.23, 1.14, respectively). EFS was affected by rs2032582, rs4880, rs3814058, rs45511401, rs1544410 and rs6539870. OS was influenced by rs 1801133, rs7186128 and rs1544410. Remarkably, rs1801133 in MTHFR (p = 0.02) and rs1544410 in VDR (p = 0.006) also added an important predictive value for OS to the MYCN status, with a more accurate substratification of the patients. Although validation studies in independent cohorts will be required, the data obtained supports the utility of Pharmacogenetics for predicting Neuroblastoma treatment outcomes.


Assuntos
Biomarcadores Tumorais , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/mortalidade , Receptores de Calcitriol/genética , Alelos , Frequência do Gene , Genótipo , Humanos , Prognóstico , Análise de Sobrevida
13.
Pediatr Blood Cancer ; 67(3): e28113, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31802629

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies on several cancer types show that metabolomics provides a potentially useful noninvasive screening approach for outcome prediction and accurate response to treatment assessment. Neuroblastoma (NB) accounts for at least 15% of cancer-related deaths in children. Although current risk-based treatment approaches in NB have resulted in improved outcome, survival for high-risk patients remains poor. This study aims to evaluate the use of metabolomics for improving patients' risk-group stratification and outcome prediction in NB. DESIGN AND METHODS: Plasma samples from 110 patients with NB were collected at diagnosis prior to starting therapy and at the end of treatment if available. Metabolomic analysis of samples was carried out by ultra-performance liquid chromatography-time of flight mass spectrometry (UPLC-MS). RESULTS: The metabolomic analysis was able to identify different plasma metabolic profiles in high-risk and low-risk NB patients at diagnosis. The metabolic model correctly classified 16 high-risk and 15 low-risk samples in an external validation set providing 84.2% sensitivity (60.4-96.6, 95% CI) and 93.7% specificity (69.8-99.8, 95% CI). Metabolomic profiling could also discriminate high-risk patients with active disease from those in remission. Notably, a plasma metabolomic signature at diagnosis identified a subset of high-risk NB patients who progressed during treatment. CONCLUSIONS: To the best of our knowledge, this is the largest NB study investigating the prognostic power of plasma metabolomics. Our results support the potential of metabolomic profiling for improving NB risk-group stratification and outcome prediction. Additional validating studies with a large cohort are needed.


Assuntos
Biomarcadores Tumorais/metabolismo , Metaboloma , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Adolescente , Criança , Pré-Escolar , Terapia Combinada , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Neuroblastoma/terapia , Prognóstico
14.
Pathol Oncol Res ; 26(4): 2057-2066, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31656020

RESUMO

Ewing sarcoma is a rare tumor developed in bone and soft tissues of children and teenagers. This entity is biologically led by a chromosomal translocation, typically including EWS and FLI1 genes. Little is known about Ewing sarcoma predisposition, although the role of environmental factors, ethnicity and certain polymorphisms on Ewing sarcoma susceptibility has been studied during the last few years. Its prevalence among cancer predisposition syndromes has also been thoroughly examined. This review summarizes the available evidence on predisposing factors involved in Ewing sarcoma susceptibility. On the basis of these data, an integrated approach of the most influential factors on Ewing sarcoma predisposition is proposed.


Assuntos
Neoplasias Ósseas/patologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/patologia , Neoplasias Ósseas/genética , Humanos , Sarcoma de Ewing/genética
15.
Sci Rep ; 9(1): 13806, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551474

RESUMO

Neuroblastoma (NB) is a heterogeneous tumor with an extremely diverse prognosis according to clinical and genetic factors, such as the presence of an 11q deletion (11q-del). A multicentric study using data from a national neuroblastic tumor database was conducted. This study compared the most important features of NB patients: presence of 11q-del, presence of MYCN amplification (MNA) and remaining cases. A total of 357 patients were followed throughout an 8-year period. 11q-del was found in sixty cases (17%). 11q-del tumors were diagnosed at an older age (median 3.29 years). Overall survival (OS) was lower in 11q-del patients (60% at 5 years), compared to all other cases (76% at 5 years) p = 0.014. Event free survival (EFS) was 35% after 5 years, which is a low number when compared with the remaining cases: 75% after 5 years (p < 0.001). Localized tumors with 11q-del have a higher risk of relapse (HR = 3.312) such as 4 s 11q-del patients (HR 7.581). 11q-del in NB is a dismal prognostic factor. Its presence predicts a bad outcome and increases relapse probability, specially in localized stages and 4 s stages. The presence of 11q aberration should be taken into consideration when stratifying neuroblastoma risk groups.

16.
Cancer Drug Resist ; 2(1): 53-68, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-35582138

RESUMO

The aim of this work was to supply an overview of the germline Pharmacogenetics that can be already implemented in the oncology clinical practice. An explanation of the three pillars considered necessary for determining which genetic polymorphisms should be used has been provided. These are PharmGKB single nucleotide polymorphism (SNP)-Drug Clinical Annotations with levels of evidence 1 or 2; the genetic information provided in the drug labels by the drug regulatory main agencies (Food and Drug Administration and European Medicines Agency, mainly); and the guidelines elaborated by international expert consortia (mainly Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group). A summary of the relevant SNPs and the recommendations on how to apply their results has also been compiled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA