Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 114(5): 843-854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648074

RESUMO

Climate change is having a significant impact on global agriculture, particularly on vegetable crops, which play a critical role in global nutrition. Recently, increasing research has concentrated on the impact of climate change on vegetable crop diseases, with several studies being conducted in phytotrons, which have been used to explore the effects of increased temperatures and CO2 concentrations to simulate future scenarios. This review focuses on the combined effects of temperature and carbon dioxide increases on foliar and soilborne vegetable diseases, as evaluated under phytotron conditions. The influence of climate change on mycotoxin production and disease management strategies is also explored through case studies. The results offer valuable information that can be used to guide both seed and agrochemical industries, as well as to develop disease-resistant varieties and innovative control measures, including biocontrol agents, considering the diseases that are likely to become prevalent under future climatic scenarios. Recommendations on how to manage vegetable diseases under ongoing climate change are proposed to facilitate plants' adaptation to and enhanced against the changing conditions. A proactive and comprehensive response to climate-induced challenges in vegetable farming is imperative to ensure food security and sustainability.


Assuntos
Agricultura , Mudança Climática , Produtos Agrícolas , Doenças das Plantas , Verduras , Doenças das Plantas/prevenção & controle , Produtos Agrícolas/crescimento & desenvolvimento , Dióxido de Carbono/análise , Temperatura , Micotoxinas/análise
2.
Plant Dis ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157115

RESUMO

Strawberry (Fragaria × ananassa Duch.) is widely cultivated in Italy. During May-June 2022, mild symptoms of an unknown leaf spot disease appeared on 5-10% of June-bearing strawberry (cv. Elodì) plants transplanted in July 2021 in a commercial farm located in the province of Cuneo, North Italy. During September-November 2022, the symptoms appeared also on 10-15% of the plants transplanted in July 2022. The disease was scattered throughout the field, large 600 m2, both on new and senescent leaves. Fungicides (sulphur, Tiovit Jet; penconazole, Topas 10 EC) were applied to the plants according to integrated pest management during the growing period. The disease symptoms were purplish to brown necrotic leaf spots up to 1-3 mm in diameter and chlorotic leaf margins. Black lesions were occasionally observed on the petioles, appearing as small necrotic or larger elongated lesions causing leaf death. Peritechia were observed in planta after about 4 months from sampling and measured (144 to 239 µm and 200 to 291 µm, n = 10). Diseased leaves and petioles from about 10 plants were surface disinfested for 1 min in 1% NaClO, rinsed with sterile water and plated on potato dextrose agar (PDA) amended with 25 mg streptomycin sulphate/liter. A fungus with white cottony colonies was repeatedly recovered and maintained in pure culture on PDA. Biguttulate conidia with rounded ends were measured (4.3 to 8.0 µm and 1.2 to 2.9 µm, average 6.1× 2.3 µm, n = 50) from 21-day old colonies grown in PDA at 22°C and 12 h photoperiod. According to colony and conidia morphology, the isolate was identified as Gnomoniopsis sp. (Walker et al., 2010). The fungal DNA was extracted from a pure culture of one isolate selected as a representative (code FR2-22), by using the E.Z.N.A. Fungal DNA Mini Kit (Omega Bio-Tek, Darmstadt, Germany). The identification was carried out by amplifying and sequencing the internal transcribed spacer (ITS) region and the partial translation elongation factor 1-α (TEF) gene using the primers ITS1/ITS4 and EF-728F/EF2 (Udayanga et al., 2021), respectively. The purified PCR products were sequenced at the BMR Genomics Centre (Padova, Italy) obtaining 551bp (ITS) and 652bp (TEF) sequences deposited in GenBank (Accession nos. OQ179950 and OQ190173, respectively). A BLASTn search of both sequences revealed to be 100% identical to the ITS and TEF loci of Gnomoniopsis fructicola sequences of the isolates VPRI_15547 and CBS 275.51 deposited in GenBank with accession Nos. MT378345 and MT383092. The pathogenicity of the isolate FR2-22 was assessed in two trials by biological tests (3 replicates with 1 plant per replicate/pot) in two greenhouse compartments, kept at temperature 20-24°C and at humidity 80-90%. Healthy leaves of forty-day-old strawberry plants (cv. Elodì) were sprayed with 1-5 x106 conidia/ml obtained from the FR2-22 isolate grown on PDA at 25°C for 20 days. The control (water-sprayed plants) was kept in the same conditions. Small leaf spots similar to the symptoms previously observed in the farm were observed 15 days post inoculation. Furthermore, 30 to 40% of leaves developed symptoms similar to those observed in the field after 25-40 days, while the control remained health. The same fungal isolate was repeatedly reisolated from the affected leaves and petioles and identified based on TEF sequencing. Gnomoniopsis fragariae comb. nov., designed as new name for Gnomoniopsis fructicola (Udayanga et al., 2021), has previously been reported on Fragaria × ananassa plants in Australia and in the USA (Farr and Rossman, 2023). To the best of our knowledge, this is the first report of G. fragariae on strawberry in Italy. The impact of the disease caused by this pathogen could be of high importance in the future of strawberry production in Italy. Healthy propagation material and strict disease management practices in nurseries is a requirement to avoid disease epidemics.

5.
Plant Dis ; 106(6): 1541-1554, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34978872

RESUMO

This feature article tracks 100 years of soil disinfestation, from the goal of eradicating soilborne pathogens and pests to much milder approaches, aimed at establishing a healthier soil, by favoring or enhancing the beneficial soil microflora and introducing biological control agents. Restrictions on the use of many chemical fumigants is favoring the adoption of nonchemical strategies, from soilless cultivation to the use of physical or biological control measures, with more focus on maintaining soil microbial diversity, thus enhancing soil and plant health. Such approaches are described and discussed, with special focus on their integrated use.


Assuntos
Microbiologia do Solo , Solo , Agentes de Controle Biológico , Plantas
6.
Plant Dis ; 105(5): 1241-1258, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33135987

RESUMO

Bedding plants are a major group of ornamentals produced in greenhouses or nurseries worldwide and planted outdoors. Their economic importance has increased continuously in the last four decades in both the United States and the European Union. These plants are subject to a broad number of diseases that can negatively impact their production and cultivation. The initial steps of production strongly influence the health status of these plants and, consequently, their aesthetic appeal, which is a strong requisite for consumers. Seeds, cuttings, and other forms of propagative material, along with production systems and growing media, can influence the phytosanitary status of the final product. In this article, case studies of soilborne and foliar diseases are presented together with preventive measures to achieve innovative disease management strategies. Quarantine restrictions and eradication measures are also discussed, in consideration of the high likelihood for ornamental plants to be long-distance vectors of new pathogens and pests.


Assuntos
Micoses , Plantas , Roupas de Cama, Mesa e Banho , Sementes , Estados Unidos
7.
Plant Dis ; 104(11): 2851-2859, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32902358

RESUMO

A TaqMan quantitative PCR (qPCR) assay based on the translation elongation factor 1-α gene was developed for the quantification of Venturia inaequalis in leaves and fruits of Malus × domestica and in spore trap samples. The designed primers and hydrolysis probe amplified a specific 86-bp fragment for V. inaequalis. The specificity of the assay was tested using 35 strains of V. inaequalis and 20 different fungal species, including common pathogens of apple and other species of Venturia. The limit of detection was 20 fg, which is lower than a single genome of V. inaequalis. The selectivity of the assay was tested using DNA from three cultivars of Malus × domestica, and no influence on pathogen amplification was found. The assay was also validated for repeatability and reproducibility. With this assay, it was possible to detect and quantify V. inaequalis in four cultivars (Ambrosia, Florina, Golden Delicious, and Mondial Gala) in both symptomatic and asymptomatic leaves and in symptomatic Golden Delicious apple fruit stored for 2 months. Furthermore, the assay was successfully tested on spore trap samples originating from apple orchards. The quantification of the molecular assay when compared with the estimated number of V. inaequalis cells, using an optical microscope, showed a correlation coefficient of 0.8186. The developed technique could be used to detect V. inaequalis in asymptomatic samples without any cross-reaction with other fungal species. Furthermore, to improve the efficacy of disease management with a timely application of fungicides, this assay could be used for the analysis of spore trap samples by using an implemented extraction method.


Assuntos
Malus , Frutas , Doenças das Plantas , Folhas de Planta , Reprodutibilidade dos Testes
8.
Front Plant Sci ; 11: 885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670324

RESUMO

Phytophthora capsici Leonian (PHC) is a filamentous pathogen oomycete that causes root, fruit, foliar and crown rot over a wide host range, including the economically and nutritionally important summer squash (Cucurbita pepo var. cylindrica L.) crop. PHC chemical control strategies are difficult to adopt, due to the limited number of registered chemicals that are permitted and the scalar harvest system. For these reasons, other strategies, such as the use of waste-based composts that can act as suppressive agents against several soilborne pathogens, have been studied intensively. It is well known that compost's microbiota plays an important role to confer its suppressive ability. In this study, four different composts were analyzed with both 16S rRNA gene and 18S rRNA gene real-time PCR amplification and with 26S gene amplicon-based sequencing; the total abundance of the bacterial and fungal communities was found to be higher compared to literature, thus confirming that the four composts were a good inoculum source for agricultural applications. The core mycobiota was mainly composed of 31 genera; nevertheless, it was possible to observe a clear predominance of the same few taxa in all the composts. The four composts were then tested, at different concentrations (1-10-20% v/v), to establish their ability to confer suppressiveness to the Phytophthora capsici (PHC) - Cucurbita pepo pathosystem in controlled greenhouse pot trials. A total of 12 compost mixtures were considered, and of these, one (Trichoderma-enriched compost at 10% v/v) was able to statistically reduce the disease incidence caused by PHC (by 50% compared to the untreated control). Hence, the microbiota composition of the most effective compost treatment was investigated and compared with untreated and chemical (metalaxyl) controls. Mycobiota sequencing showed genera differences between the three treatments, with relative abundances of several fungal genera that were significantly different among the samples. Moreover, PCA analyses clustered the compost treatment differently from the chemical and the untreated controls. These findings suggest that suppressive activity of a compost is strictly influenced by its microbiota and the applied dosage, but the ability to induce a shaping in the rhizosphere microbial composition is also required.

9.
Plant Dis ; 104(8): 2275-2287, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32584157

RESUMO

Serious outbreaks of Alternaria leaf spot and plant decay have recently been recorded on several ornamental plants in the Biella Province (Northern Italy). Twenty-two fungal isolates were obtained from Alternaria infected plant tissues from 13 ornamental hosts. All the isolates were identified morphologically as small-spored Alternaria species. Multilocus sequence typing, carried out by means of ITS, rpb2, tef1, endoPG, Alt a 1, and OPA10-2, assigned 19 isolates as Alternaria alternata, two isolates as belonging to the Alternaria arborescens species complex, and one isolate as an unknown Alternaria sp. Haplotype analyses of ornamental and reference A. alternata isolates from 12 countries identified 14 OPA10-2 and 11 endoPG haplotypes showing a relatively high haplotype diversity. A lack of host specialization or geographic distribution was observed. The host range of the studied A. alternata isolates expanded in cross-pathogenicity assays, and more aggressiveness was frequently observed on the experimental plants than on the host plants from which the fungal isolates were originally isolated. High disease severity, population expansion, intraspecies diversity, and increased range of experimental hosts were seen in the emergence of Alternaria disease on ornamentals. More epidemiological and molecular studies should be performed to better understand these diseases, taking into consideration factors such as seed transmission and ongoing climate changes.


Assuntos
Alternaria , Itália , Virulência
10.
Plants (Basel) ; 9(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455920

RESUMO

Black spot is a major foliar disease of sweet basil (Ocimum basilicum) present in a typical cultivation area of northern Italy, including the Liguria and southern Piedmont regions, where this aromatic herb is an economically important crop. In this study, 15 Colletotrichum isolates obtained from sweet basil plants with symptoms of black spot sampled in this area were characterized morphologically and by nuclear DNA analysis using internal transcribed spacers (ITS) and intervening 5.8S nrDNA as well as part of the ß-tubulin gene (TUB2) regions as barcode markers. Analysis revealed all but one isolate belonged to the recently described species C. ocimi of the C. destructivum species complex. Only one isolate was identified as C. destructivum sensu stricto (s.s.). In pathogenicity tests on sweet basil, both C. ocimi and C. destructivum s.s. isolates incited typical symptoms of black spot, showing that although C. ocimi prevails in this basil production area, it is not the sole causal agent of black spot in northern Italy. While no other hosts of C. ocimi are known worldwide, the close related species C. destructivum has a broad host range, suggesting a speciation process of C. ocimi within this species complex driven by adaptation to the host.

11.
Plant Dis ; 103(9): 2153-2170, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31343378

RESUMO

The ready-to-eat salad sector, also called fresh-cut or bagged salads, is a fast-growing segment of the fresh-food industry. The dynamism and specialization of this sector, together with the lack of adequate crop rotation, the globalization of the seed market, and climate change, are the main causes of the development of many new diseases that cause severe production losses. Newly detected diseases of the most important crops grown (lettuce, wild and cultivated rocket, lamb's lettuce, chicory, endive, basil, spinach, and Swiss chard) are critically discussed. The management of these diseases represents a formidable challenge, since few fungicides are registered on these minor-use crops. An interesting feature of the ready-to-eat salad sector is that most crops are grown under protection, often in soilless systems, which provide an environment helpful to the implementation of innovative control methods. Current trends in disease management are discussed, with special focus on the most sustainable practices.


Assuntos
Produtos Agrícolas , Lactuca , Doenças das Plantas , Verduras , Agricultura/normas , Agricultura/tendências , Produtos Agrícolas/microbiologia , Lactuca/microbiologia , Lactuca/normas , Ocimum basilicum , Doenças das Plantas/prevenção & controle , Valerianella , Verduras/microbiologia
12.
Phytopathology ; 109(6): 1053-1061, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30667339

RESUMO

The genera Paramyrothecium and Albifimbria have been established from the former genus Myrothecium and they generally comprise common soil-inhabiting and saprophytic fungi. Within these genera, only two fungi have been recognized as phytopathogenic thus far: P. roridum and A. verrucaria, both of which cause necrotic leaf spots and plant collapse. Severe leaf necrosis and plant decay have been observed in Northern and Southern Italy on leafy vegetable crops. Thirty-six strains of Paramyrothecium- and Albifimbria-like fungi were isolated from affected plants belonging to eight different species. Based on morphological characteristics, 19 strains were assigned to A. verrucaria, whereas the remaining strains, which mostly resembled Paramyrothecium-like fungi, could not be identified precisely. Molecular characterization of six loci (internal transcribed spacer [ITS], ß-tubulin [tub2], calmodulin [cmdA], translation elongation factor 1-alpha [tef1], large subunit ribosomal RNA [LSU], and mitochondrial ATP 6synthase 6 [ATP6]) of the 36 new isolates and three previously ITS-characterized isolates assigned all strains to four species: A. verrucaria, P. roridum, P. foliicola, and P. nigrum. Single and concatenated phylogenetic analyses were conducted, and they clearly distinguished the isolated fungi into four different groups. A. verrucaria, P. roridum, P. foliicola, and P. nigrum were able to induce leaf necrosis singly, and they were confirmed to be the causal agents of the leaf spot disease through pathogenicity assays. The involvement of fungi previously considered saprophytic (i.e., P. foliicola and P. nigrum) in the development of plant disease for the first time deserves particular attention because of the possibility of their transmission by seeds and the limited knowledge of their management with chemicals.


Assuntos
Ascomicetos , Doenças das Plantas/microbiologia , Verduras , Itália , Filogenia
13.
Pest Manag Sci ; 75(2): 356-365, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29888848

RESUMO

BACKGROUND: Pythium species attack various vegetable crops causing seed, stem and root rot, and 'damping-off' after germination. Pythium diseases are prevalently controlled by two classes of fungicides, QoIs with azoxystrobin and phenlyamides with mefenoxam as representatives. The present study aimed to test the sensitivity of six Pythium species from different vegetable crops to azoxystrobin and mefenoxam and differentiating species based on ITS, cytochrome b and RNA polymerase I gene sequences. RESULTS: The inter- and intra-species sensitivity to azoxystrobin was found to be stable, with the exception of one Pythium paroecandrum isolate, which showed reduced sensitivity and two cytochrome b amino acid changes. For mefenoxam, the inter-species sensitivity was quite variable and many resistant isolates were found in all six Pythium species, but no RNA polymerase I amino acid changes were observed in them. ITS and cytochrome b phylogenetic analyses permitted a clear separation of Pythium species corresponding to globose- and filamentous-sporangia clusters. CONCLUSION: The results document the necessity of well-defined chemical control strategies adapted to different Pythium species. Since the intrinsic activity of azoxystrobin among species was stable and no resistant isolates were found, it may be applied without species differentiation, provided it is used preventatively to also control highly aggressive isolates. For a reliable use of mefenoxam, precise identification and sensitivity tests of Pythium species are crucial because its intrinsic activity is variable and resistant isolates may exist. Appropriate mixtures and/or alternation of products may help to further delay resistance development. © 2018 Society of Chemical Industry.


Assuntos
Alanina/análogos & derivados , Fungicidas Industriais/farmacologia , Doenças das Plantas/classificação , Pirimidinas/farmacologia , Pythium/classificação , Pythium/efeitos dos fármacos , Estrobilurinas/farmacologia , Transportadores de Cassetes de Ligação de ATP/análise , Alanina/farmacologia , Sequência de Aminoácidos , Produtos Agrícolas/microbiologia , Citocromos b/química , Citocromos b/genética , Citocromos b/metabolismo , DNA Espaçador Ribossômico/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Pythium/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Verduras/microbiologia
14.
Toxins (Basel) ; 10(12)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544921

RESUMO

Chestnut drying is used to prevent postharvest losses and microorganism contamination during storage. Several studies reported the contamination by aflatoxins (AFs) produced by Aspergillus spp. in chestnuts. The effect of drying temperatures (from 30 to 50 °C) was evaluated on the growth of A. flavus and the production of aflatoxins in chestnuts. The influence of the treatment on the proximate composition, the total phenol content and antioxidant activity of chestnuts was considered. Fungal colonization was observed on the nuts dried at 30, 35, and 40 °C; the incidence was lower at 40 °C. The highest concentrations of AFB1 and AFB2 were produced at 40 °C. No aflatoxins were detected at 45 or 50 °C. At 40 °C A. flavus was under suboptimal conditions for growth (aw 0.78), but the fungus was able to synthesize aflatoxins. As the temperatures applied increased, the total phenol content increased, while the antioxidant activity decreased. A drying treatment at 45 °C for seven days (aw 0.64) could be a promising method to effectively control both the growth of aflatoxigenic fungi and the production of aflatoxins. This study provides preliminary data useful to improve the current drying conditions used in chestnut mills, to reduce both fungal growth and aflatoxin production.


Assuntos
Aesculus , Aflatoxinas/metabolismo , Aspergillus flavus , Dessecação/métodos , Contaminação de Alimentos/prevenção & controle , Nozes , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Nozes/química , Nozes/microbiologia , Temperatura
15.
Food Microbiol ; 76: 396-404, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166166

RESUMO

A collection of 124 isolates of Penicillium spp. was created by monitoring fresh chestnuts, dried chestnuts, chestnut granulates, chestnut flour and indoor chestnut mills. Sequencing of the ITS region, ß-tubulin and calmodulin, macro-morphology and secondary metabolite production made it possible to determine 20 species of Penicillium. P. bialowiezense was dominant in the fresh chestnuts, while P. crustosum was more frequent in the other sources. A pathogenicity test on chestnut showed that around 70% of the isolates were virulent. P. corylophilum and P. yezoense were not pathogenic, while the other 18 species had at least one virulent isolate. P. expansum and P. crustosum were the most virulent. The isolates were characterized to establish their ability to produce 14 toxic metabolites in vivo: 59% were able to produce at least one mycotoxin. P. expansum was able to produce patulin, chaetoglobosin A and roquefortine, while P. bialowiezense produced C. Mycophenolic acid. Cyclopenins and viridicatins were produced by most of the P. crustosum, P. polonicum, P. solitum and P. discolour isolates. Some of the P. crustosum isolates were also able to produce roquefortine C or penitrem A. Information about the occurrence of Penicillium spp. and their mycotoxins will help producers to set up management procedures that can help to control the fungal growth and the mycotoxin production of chestnuts.


Assuntos
Fagaceae/microbiologia , Farinha/microbiologia , Micotoxinas/biossíntese , Penicillium/isolamento & purificação , Fagaceae/química , Farinha/análise , Contaminação de Alimentos/análise , Manipulação de Alimentos , Nozes/química , Nozes/microbiologia , Penicillium/classificação , Penicillium/genética , Penicillium/metabolismo , Filogenia
16.
Plant Pathol J ; 34(4): 316-326, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30140185

RESUMO

The effect of simulated climate changes by applying different temperatures and CO2 levels was investigated in the Blumeria graminis f. sp. tritici/wheat pathosystem. Healthy and inoculated plants were exposed in single phytotrons to six CO2+temperature combinations: (1) 450 ppm CO2/18-22°C (ambient CO2 and low temperature), (2) 850 ppm CO2/18-22°C (elevated CO2 and low temperature), (3) 450 ppm CO2/22-26°C (ambient CO2 and medium temperature), (4) 850 ppm CO2/22-26°C (elevated CO2 and medium temperature), (5) 450 ppm CO2/26-30°C (ambient CO2 and high temperature), and (6) 850 ppm CO2/26-30°C (elevated CO2 and high temperature). Powdery mildew disease index, fungal DNA quantity, plant death incidence, plant expression of pathogenesis-related (PR) genes, plant growth parameters, carbohydrate and chlorophyll content were evaluated. Both CO2 and temperature, and their interaction significantly influenced powdery mildew development. The most advantageous conditions for the progress of powdery mildew on wheat were low temperature and ambient CO2. High temperatures inhibited pathogen growth independent of CO2 conditions, and no typical powdery mildew symptoms were observed. Elevated CO2 did not stimulate powdery mildew development, but was detrimental for plant vitality. Similar abundance of three PR transcripts was found, and the level of their expression was different between six phytotron conditions. Real time PCR quantification of Bgt was in line with the disease index results, but this technique succeeded to detect the pathogen also in asymptomatic plants. Overall, future global warming scenarios may limit the development of powdery mildew on wheat in Mediterranean area, unless the pathogen will adapt to higher temperatures.

17.
Food Microbiol ; 73: 264-274, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29526211

RESUMO

Alternaria leaf-spot is a new disease recently reported on basil in Italy. The correct identification of Alternaria species has suffered from many reclassifications in function of morphological features and molecular data. In our study, we performed an overall approach to obtain a better characterization of basil Alternaria isolates. Morphological characteristics, seven-genome region phylogenic analysis, and secondary metabolite profile differentiated the majority of the isolates as A. alternata. OPA 1-3 and OPA 10-2 were the best molecular regions to discriminate among the isolates. Morphological characteristics and sporulation groups helped to discriminate A. tenuissima from A. alternata isolates. All isolates in the A. sect. Alternaria were mycotoxigenic and pathogenic on basil, the production of mycotoxins was enhanced on basil compared to in vitro conditions used in this work.


Assuntos
Alternaria/classificação , Alternaria/genética , Ocimum basilicum/microbiologia , Doenças das Plantas/microbiologia , Alternaria/isolamento & purificação , Alternaria/metabolismo , Itália , Micotoxinas/análise , Micotoxinas/metabolismo , Filogenia , Metabolismo Secundário , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
18.
Foods ; 7(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360731

RESUMO

The efficacy of thyme and savory essential oils were investigated against Botrytis cinerea on apple fruit. Apples treated with thyme and savory essential oils showed significantly lower gray mold severity and incidence. Thyme essential oil at 1% concentration showed the highest efficacy, with lower disease incidence and smaller lesion diameter. The expression of specific pathogenesis-related (PR) genes PR-8 and PR-5 was characterized in apple tissues in response to thyme oil application and B. cinerea inoculation. After 6 h of pathogen inoculation, thyme essential oil induced a 2.5-fold increase of PR-8 gene expression compared to inoculated fruits. After 24 h of inoculation, PR-8 was highly induced (7-fold) in both thyme oil-treated and untreated apples inoculated with B. cinerea. After 48 h of inoculation, PR-8 expression in thyme-treated and inoculated apples was 4- and 6-fold higher than in inoculated and water-treated apples. Neither thyme oil application nor B. cinerea inoculation markedly affected PR-5 expression. These results suggest that thyme oil induces resistance against B. cinerea through the priming of defense responses in apple fruit, and the PR-8 gene of apple may play a key role in the mechanism by which thyme essential oil effectively inhibits gray mold in apple fruit.

19.
Food Microbiol ; 69: 159-169, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28941897

RESUMO

An extensive sampling of Aspergillus section Flavi considered to be the main agent responsible for aflatoxin contamination, was carried out in the field and along the processing phases of chestnut flour production in 2015. Fifty-eight isolates were characterized by means of biological, molecular and chemical assays. The highest incidence of Aspergillus section Flavi was found in the field. The identification of the isolates was based on ß-tubulin and calmodulin gene sequences. A. flavus was found to be the dominant species, and this was followed by A. oryzae var effusus, A. tamarii, A. parasiticus and A. toxicarius. Nineteen percent of the strains produced aflatoxins in vitro and forty percent in vivo. The pathogenicity assay on chestnut showed 56 virulent strains out of 58. The molecular, morphological, chemical and biological analyses of A. flavus strains showed an intraspecific variability. These results confirm that a polyphasic approach is necessary to discriminate the species inside the Aspergillus section Flavi. The present research is the first monitoring and characterization of aflatoxigenic fungi from fresh chestnut and the chestnut flour process, and it highlights the risk of a potential contamination along the whole chestnut production chain.


Assuntos
Aspergillus flavus/isolamento & purificação , Fagaceae/química , Farinha/microbiologia , Contaminação de Alimentos/análise , Nozes/microbiologia , Aflatoxinas/metabolismo , Aspergillus flavus/classificação , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Fagaceae/microbiologia , Farinha/análise , Manipulação de Alimentos
20.
Phytopathology ; 107(7): 885-892, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28398878

RESUMO

Bakanae disease, which is caused by the seedborne pathogen Fusarium fujikuroi, is found throughout the world on rice. A TaqMan real-time PCR has been developed on the TEF 1-α gene to detect F. fujikuroi in different rice tissues. Three primer/probe sets were tested. The selected set produced an amplicon of 84 bp and was specific for F. fujikuroi with respect to eight Fusarium species of rice and six other rice common pathogens. The assay was validated for specificity, selectivity, sensitivity, repeatability, and reproducibility. The detection limit was set at 27.5 fg of DNA, which is approximately equivalent to one haploid genome of F. fujikuroi. The developed TaqMan real-time assay was able to efficiently detect and quantify F. fujikuroi from rice culms, leaves, roots, and seeds. At 1 week post-germination (wpg), the pathogen was more diffused in the green tissues, while at 3 wpg it was uniformly spread also in the roots. The highest concentration of F. fujikuroi was measured in the M6 cultivar, which showed around 1,450 fungal cells/g. The assay was sufficiently sensitive to detect a few genomic equivalents in the rice seeds, corresponding to 9.89 F. fujikuroi cells/g. The assay permitted bakanae disease to be detected in asymptomatic tissues at the early rice development stages.


Assuntos
Fusarium/isolamento & purificação , Oryza/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sementes/microbiologia , Doenças das Plantas/microbiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA