Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 153: 142-150, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29425845

RESUMO

Heavy metals and bromine (Br) derived from organic and industrialized fertilizers can be absorbed, transported and accumulated into parts of plants ingested by humans. This study aimed to evaluate in an experiment conducted under no-tillage for 10 years, totaling 14 applications of pig slurry manure (PS), pig deep-litter (PL), dairy slurry (DS) and mineral fertilizer (MF), the heavy metal and Br contents in soil and in whether the grains produced by corn (Zea mays L.) and wheat (Triticum aestivum L.) under these conditions could result in risk to human health. The total contents of As, Cd, Pb, Cr, Ni, Cu, Zn and Br were analyzed in samples of fertilizers, waste, soil, shoots and grains of corn and wheat. Afterwards, enrichment factor (EF), accumulation factor (AF), health risk index (HRI), target hazard quotient (THQ) and target cancer risk (TCR) were determined. Mineral fertilizer exhibited the highest As and Cr content, while the highest levels of Cu and Zn were found in animal waste. The contents of As, Cd, Cr, Cu, Ni, Pb and Zn in soil were below the limits established by environmental regulatory agencies. However, a significant enrichment factor was found for Cu in soil with a history of PL application. Furthermore, high Zn contents were found in shoots and grains of corn and wheat, especially when the plants were grown in soil with organic waste application. Applications of organic waste and mineral fertilizer provided high HRI and THQ for Br and Zn, posing risks to human health. The intake of corn and wheat fertilized with pig slurry manure, swine deep bed, liquid cattle manure and industrialized mineral fertilizer did not present TCR.


Assuntos
Bromo/análise , Produtos Agrícolas/química , Monitoramento Ambiental/métodos , Fertilizantes/análise , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Animais , Brasil , Bovinos , Humanos , Esterco/análise , Minerais/análise , Medição de Risco , Suínos
2.
Int J Phytoremediation ; 20(14): 1380-1388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30652487

RESUMO

Forest species Angico-Vermelho (Parapiptadenia rigida (Bentham) Brenan) is an alternative for the revegetation of areas contaminated with high levels of heavy metals such as copper (Cu). However, excess Cu may cause toxicity to plants, which is why the use of soil amendments can facilitate cultivation by reducing the availability of Cu in the soil. The aim of this study was to assess how the use of amendment can contribute to growth and nutritional status as well as reduce oxidative stress in Angico-Vermelho grown in Cu-contaminated soil. Samples of a Typic Hapludalf soil containing high Cu content were used for the application of four amendments (limestone, organic compost, Ca silicate and zeolite), in addition to a control treatment. The treatments were arranged in a completely randomized design, with four replicates. The use of amendments decreased Cu content available in soil and contributed to improve both plant nutritional status and its antioxidant response expressed by enzymatic activity. The application of the amendments, especially zeolite and Ca silicate, increased dry matter yield of Angico-Vermelho. Thus, the results presented here suggest that the use of amendments contributes to improving Cu-contaminated soils and favors revegetation with Angico-Vermelho.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Cobre/análise , Estado Nutricional , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA