Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Cardiol ; 83(3): 184-190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37684005

RESUMO

BACKGROUND: As the catheter-based device closure of the patent foramen ovale (PFO) is expanding, novel devices aim to address the limitations of first-generation occluders (e.g. bulk, erosion, dislodgment). The second-generation device from Encore Medical (Eagan, MN, USA) features an articulating frame structure which allows the device to better conform to atrial anatomies, has lower disc thickness and metal mass/surface area, and is fully retrievable at any point in the procedure. The aim of the study was to evaluate the feasibility and safety of a novel low-profile, fully retrievable, Encore PFO closure device in the animal model. METHODS: Six swine underwent implantation of the novel PFO occluder under fluoroscopic and intra-cardiac echocardiography guidance and survived for 140 days. Interim transthoracic echocardiography (TTE) was conducted on Day 29. Following terminal angiography and TTE at 140 days, the hearts were subjected to gross and histopathologic analysis. RESULTS: All animals were successfully implanted and survived for 140 days. Interim TTE revealed proper device retention with no blood flow across the septum or thrombus in any of the animals. X-ray and pathology results showed preserved implant integrity with no fractures, and complete integration of the devices into the septum with complete re-endothelialization and nearly complete coverage by a mature, relatively thin neoendocardium. No surface fibrin deposition or thrombosis was reported. CONCLUSIONS: In the standard porcine model, device retention and biocompatibility remained favorable following structural and functional device modifications exemplified by the second-generation PFO occluder from Encore Medical, including marked reduction of metal mass.


Assuntos
Forame Oval Patente , Dispositivo para Oclusão Septal , Suínos , Animais , Resultado do Tratamento , Cateterismo Cardíaco/métodos , Ecocardiografia , Forame Oval Patente/diagnóstico por imagem , Forame Oval Patente/cirurgia , Fluoroscopia
2.
Adv Healthc Mater ; 12(29): e2301944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565378

RESUMO

Porous tissue-engineered 3D-printed scaffolds are a compelling alternative to autografts for the treatment of large periorbital bone defects. Matching the defect-specific geometry has long been considered an optimal strategy to restore pre-injury anatomy. However, studies in large animal models have revealed that biomaterial-induced bone formation largely occurs around the scaffold periphery. Such ectopic bone formation in the periorbital region can affect vision and cause disfigurement. To enhance anatomic reconstruction, geometric mismatches are introduced in the scaffolds used to treat full thickness zygomatic defects created bilaterally in adult Yucatan minipigs. 3D-printed, anatomically-mirrored scaffolds are used in combination with autologous stromal vascular fraction of cells (SVF) for treatment. An advanced image-registration workflow is developed to quantify the post-surgical geometric mismatch and correlate it with the spatial pattern of the regenerating bone. Osteoconductive bone growth on the dorsal and ventral aspect of the defect enhances scaffold integration with the native bone while medio-lateral bone growth leads to failure of the scaffolds to integrate. A strong positive correlation is found between geometric mismatch and orthotopic bone deposition at the defect site. The data suggest that strategic mismatch >20% could improve bone scaffold design to promote enhanced regeneration, osseointegration, and long-term scaffold survivability.


Assuntos
Impressão Tridimensional , Alicerces Teciduais , Suínos , Animais , Porco Miniatura , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Osteogênese
3.
Proc Natl Acad Sci U S A ; 120(7): e2212940120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749725

RESUMO

Missense mutations that inactivate p53 occur commonly in cancer, and germline mutations in TP53 cause Li Fraumeni syndrome, which is associated with early-onset cancer. In addition, there are over two hundred germline missense variants of p53 that remain uncharacterized. In some cases, these germline variants have been shown to encode lesser-functioning, or hypomorphic, p53 protein, and these alleles are associated with increased cancer risk in humans and mouse models. However, most hypomorphic p53 variants remain un- or mis-classified in clinical genetics databases. There thus exists a significant need to better understand the behavior of p53 hypomorphs and to develop a functional assay that can distinguish hypomorphs from wild-type p53 or benign variants. We report the surprising finding that two different African-centric genetic hypomorphs of p53 that occur in distinct functional domains of the protein share common activities. Specifically, the Pro47Ser variant, located in the transactivation domain, and the Tyr107His variant, located in the DNA binding domain, both share increased propensity to misfold into a conformation specific for mutant, misfolded p53. Additionally, cells and tissues containing these hypomorphic variants show increased NF-κB activity. We identify a common gene expression signature from unstressed lymphocyte cell lines that is shared between multiple germline hypomorphic variants of TP53, and which successfully distinguishes wild-type p53 and a benign variant from lesser-functioning hypomorphic p53 variants. Our findings will allow us to better understand the contribution of p53 hypomorphs to disease risk and should help better inform cancer risk in the carriers of p53 variants.


Assuntos
Síndrome de Li-Fraumeni , Proteína Supressora de Tumor p53 , Animais , Camundongos , Humanos , Proteína Supressora de Tumor p53/metabolismo , Predisposição Genética para Doença , Síndrome de Li-Fraumeni/genética , Genes p53 , Heterozigoto , Mutação em Linhagem Germinativa
4.
Biomaterials ; 282: 121392, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134701

RESUMO

Critical-sized midfacial bone defects present a unique clinical challenge due to their complex three-dimensional shapes and intimate associations with sensory organs. To address this challenge, a point-of-care treatment strategy for functional, long-term regeneration of 2 cm full-thickness segmental defects in the zygomatic arches of Yucatan minipigs is evaluated. A digital workflow is used to 3D-print anatomically precise, porous, biodegradable scaffolds from clinical-grade poly-ε-caprolactone and decellularized bone composites. The autologous stromal vascular fraction of cells (SVF) is isolated from adipose tissue extracts and infused into the scaffolds that are implanted into the zygomatic ostectomies. Bone regeneration is assessed up to 52 weeks post-operatively in acellular (AC) and SVF groups (BV/DV = 0.64 ± 0.10 and 0.65 ± 0.10 respectively). In both treated groups, bone grows from the adjacent tissues and restores the native anatomy. Significantly higher torque is required to fracture the bone-scaffold interface in the SVF (7.11 ± 2.31 N m) compared to AC groups (2.83 ± 0.23 N m). Three-dimensional microcomputed tomography analysis reveals two distinct regenerative patterns: osteoconduction along the periphery of scaffolds to form dense lamellar bone and small islands of woven bone deposits growing along the struts in the scaffold interior. Overall, this study validates the efficacy of using 3D-printed bioactive scaffolds with autologous SVF to restore geometrically complex midfacial bone defects of clinically relevant sizes while also highlighting remaining challenges to be addressed prior to clinical translation.


Assuntos
Fração Vascular Estromal , Alicerces Teciduais , Animais , Regeneração Óssea , Osteogênese , Sistemas Automatizados de Assistência Junto ao Leito , Impressão Tridimensional , Suínos , Porco Miniatura , Microtomografia por Raio-X
5.
EBioMedicine ; 48: 353-363, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31542392

RESUMO

BACKGROUND: Mitochondrial functions are exploited in cancer and provide a validated therapeutic target. However, how this process is regulated has remained mostly elusive and the identification of new pathways that control mitochondrial integrity in cancer is an urgent priority. METHODS: We studied clinically-annotated patient series of primary and metastatic prostate cancer, representative cases of multiple myeloma (MM) and publicly available genetic databases. Gene regulation studies involved chromatin immunoprecipitation, PCR amplification and Western blotting of conditional Myc-expressing cell lines. Transient or stable gene silencing was used to quantify mitochondrial functions in bioenergetics, outer membrane permeability, Ca2+ homeostasis, redox balance and cell death. Tumorigenicity was assessed by cell proliferation, colony formation and xenograft tumour growth. FINDINGS: We identified Mitochondrial Fission Factor (MFF) as a novel transcriptional target of oncogenic Myc overexpressed in primary and metastatic cancer, compared to normal tissues. Biochemically, MFF isoforms, MFF1 and MFF2 associate with the Voltage-Dependent Anion Channel-1 (VDAC1) at the mitochondrial outer membrane, in vivo. Disruption of this complex by MFF silencing induces general collapse of mitochondrial functions with increased outer membrane permeability, loss of inner membrane potential, Ca2+ unbalance, bioenergetics defects and activation of cell death pathways. In turn, this inhibits tumour cell proliferation, suppresses colony formation and reduces xenograft tumour growth in mice. INTERPRETATION: An MFF-VDAC1 complex is a novel regulator of mitochondrial integrity and actionable therapeutic target in cancer.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células , Humanos , Potencial da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Permeabilidade
6.
Elife ; 72018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856313

RESUMO

Breast cancer is the most commonly diagnosed malignancy in women. Analysis of breast cancer genomic DNA indicates frequent loss-of-function mutations in components of the cJUN NH2-terminal kinase (JNK) signaling pathway. Since JNK signaling can promote cell proliferation by activating the AP1 transcription factor, this apparent association of reduced JNK signaling with tumor development was unexpected. We examined the effect of JNK deficiency in the murine breast epithelium. Loss of JNK signaling caused genomic instability and the development of breast cancer. Moreover, JNK deficiency caused widespread early neoplasia and rapid tumor formation in a murine model of breast cancer. This tumor suppressive function was not mediated by a role of JNK in the growth of established tumors, but by a requirement of JNK to prevent tumor initiation. Together, these data identify JNK pathway defects as 'driver' mutations that promote genome instability and tumor initiation.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Instabilidade Genômica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/deficiência , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo
7.
J Biol Chem ; 291(48): 25247-25254, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27754870

RESUMO

Protein homeostasis, or proteostasis, is required for mitochondrial function, but its role in cancer is controversial. Here we show that transgenic mice expressing the mitochondrial chaperone TNFR-associated protein 1 (TRAP1) in the prostate develop epithelial hyperplasia and cellular atypia. When examined on a Pten+/- background, a common alteration in human prostate cancer, TRAP1 transgenic mice showed accelerated incidence of invasive prostatic adenocarcinoma, characterized by increased cell proliferation and reduced apoptosis, in situ Conversely, homozygous deletion of TRAP1 delays prostatic tumorigenesis in Pten+/- mice without affecting hyperplasia or prostatic intraepithelial neoplasia. Global profiling of Pten+/--TRAP1 transgenic mice by RNA sequencing and reverse phase protein array reveals modulation of oncogenic networks of cell proliferation, apoptosis, cell motility, and DNA damage. Mechanistically, reconstitution of Pten+/- prostatic epithelial cells with TRAP1 increases cell proliferation, reduces apoptosis, and promotes cell invasion without changes in mitochondrial bioenergetics. Therefore, TRAP1 is a driver of prostate cancer in vivo and an "actionable" therapeutic target.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Neoplasias/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
8.
Comp Med ; 66(3): 225-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27298248

RESUMO

Five birds in a captive zebra finch research colony were diagnosed with systemic amyloidosis within a 7-mo period by means of postmortem Congo red staining and green birefringence under polarized light. The liver was the most frequently and usually the most seriously affected organ, followed by the spleen and then the kidney. All 5 birds had been clinically affected with various inflammatory, infectious, and neoplastic conditions associated with amyloid A (AA) amyloidosis in humans and animals. Immunohistochemistry using antisera against duck AA protein revealed that tissues from 2 of the 5 birds were positive for the presence of AA protein and systemic inflammation-associated amyloidosis. Although the development of AA amyloidosis has been associated with chronic inflammation, trauma, and various infectious and neoplastic diseases as well as possible genetic predispositions and stresses linked to overcrowding, the root causes for individual cases of AA amyloidosis are incompletely understood. As far as we know, this report is the first description of AA amyloidosis in captive, research zebra finches.


Assuntos
Amiloidose/veterinária , Doenças das Aves/patologia , Tentilhões , Amiloidose/patologia , Animais , Feminino , Imuno-Histoquímica , Rim/patologia , Fígado/patologia , Masculino , Proteína Amiloide A Sérica/metabolismo , Baço/patologia
9.
Genes Dev ; 30(8): 918-30, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27034505

RESUMO

A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism:Gls2(glutaminase 2) and Sco2 We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.


Assuntos
Genes p53/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , População Negra/genética , Carcinoma Hepatocelular/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Cisplatino/farmacologia , Códon/química , Códon/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Ligação Proteica/genética , Fatores de Risco , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
10.
Hand (N Y) ; 10(3): 482-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26330782

RESUMO

BACKGROUND: Reduction of peritendinous adhesions after injury and repair has been the subject of extensive prior investigation. The application of a circumferential barrier at the repair site may limit the quantity of peritendinous adhesions while preserving the tendon's innate ability to heal. The authors compare the effectiveness of a type I/III collagen membrane and a collagen-glycosaminoglycan (GAG) resorbable matrix in reducing tendon adhesions in an experimental chicken model of a "zone II" tendon laceration and repair. METHODS: In Leghorn chickens, flexor tendons were sharply divided using a scalpel and underwent repair in a standard fashion (54 total repairs). The sites were treated with a type I/III collagen membrane, collagen-GAG resorbable matrix, or saline in a randomized fashion. After 3 weeks, qualitative and semiquantitative histological analysis was performed to evaluate the "extent of peritendinous adhesions" and "nature of tendon healing." The data was evaluated with chi-square analysis and unpaired Student's t test. RESULTS: For both collagen materials, there was a statistically significant improvement in the degree of both extent of peritendinous adhesions and nature of tendon healing relative to the control group. There was no significant difference seen between the two materials. There was one tendon rupture observed in each treatment group. Surgical handling characteristics were subjectively favored for type I/III collagen membrane over the collagen-GAG resorbable matrix. CONCLUSION: The ideal method of reducing clinically significant tendon adhesions after injury remains elusive. Both materials in this study demonstrate promise in reducing tendon adhesions after flexor tendon repair without impeding tendon healing in this model.

11.
Virology ; 462-463: 254-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24999050

RESUMO

The response to influenza virus (IAV) infection and severity of disease is highly variable in humans. We hypothesized that one factor contributing to this variability is the presence of specific respiratory tract (RT) microbes. One such microbe is Streptococcus pneumoniae (Sp) that is carried asymptomatically in the RT of many humans. In a mouse co-infection model we found that in contrast to secondary bacterial infection that exacerbates disease, Sp colonization 10 days prior to IAV protects from virus-induced morbidity and lung pathology. Using mutant Sp strains, we identified a critical role for the bacterial virulence factor pneumolysin (PLY) in mediating this protection. Colonization with the PLY-sufficient Sp strain induces expression of the immune-suppressive enzyme arginase 1 in alveolar macrophages (aMø) and correlates with attenuated recruitment and function of pulmonary inflammatory cells. Our study demonstrates a novel role for PLY in Sp-mediated protection by maintaining aMø as "gatekeepers" against virus-induced immunopathology.


Assuntos
Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Streptococcus pneumoniae/enzimologia , Estreptolisinas/imunologia , Estreptolisinas/metabolismo , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Análise de Sobrevida
12.
J Immunol ; 192(7): 3043-56, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591372

RESUMO

Although therapies targeting distinct cellular pathways (e.g., anticytokine versus anti-B cell therapy) have been found to be an effective strategy for at least some patients with inflammatory arthritis, the mechanisms that determine which pathways promote arthritis development are poorly understood. We have used a transgenic mouse model to examine how variations in the CD4(+) T cell response to a surrogate self-peptide can affect the cellular pathways that are required for arthritis development. CD4(+) T cells that are highly reactive with the self-peptide induce inflammatory arthritis that affects male and female mice equally. Arthritis develops by a B cell-independent mechanism, although it can be suppressed by an anti-TNF treatment, which prevented the accumulation of effector CD4(+) Th17 cells in the joints of treated mice. By contrast, arthritis develops with a significant female bias in the context of a more weakly autoreactive CD4(+) T cell response, and B cells play a prominent role in disease pathogenesis. In this setting of lower CD4(+) T cell autoreactivity, B cells promote the formation of autoreactive CD4(+) effector T cells (including Th17 cells), and IL-17 is required for arthritis development. These studies show that the degree of CD4(+) T cell reactivity for a self-peptide can play a prominent role in determining whether distinct cellular pathways can be targeted to prevent the development of inflammatory arthritis.


Assuntos
Artrite/imunologia , Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Transdução de Sinais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Artrite/genética , Artrite/prevenção & controle , Autoimunidade/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Membro Anterior/imunologia , Membro Anterior/metabolismo , Membro Anterior/patologia , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Membro Posterior/imunologia , Membro Posterior/metabolismo , Membro Posterior/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
13.
J Immunol ; 190(12): 6115-25, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23667113

RESUMO

We examined the formation, participation, and functional specialization of virus-reactive Foxp3(+) regulatory T cells (Tregs) in a mouse model of influenza virus infection. "Natural" Tregs generated intrathymically, based on interactions with a self-peptide, proliferated in response to a homologous viral Ag in the lungs and, to a lesser extent, in the lung-draining mediastinal lymph nodes (medLNs) of virus-infected mice. In contrast, conventional CD4(+) T cells with identical TCR specificity underwent little or no conversion to become "adaptive" Tregs. The virus-reactive Tregs in the medLNs and the lungs of infected mice upregulated a variety of molecules associated with Treg activation, as well as acquired expression of molecules (T-bet, Blimp-1, and IL-10) that confer functional specialization to Tregs. Notably, however, the phenotypes of the T-bet(+) Tregs obtained from these sites were distinct, because Tregs isolated from the lungs expressed significantly higher levels of T-bet, Blimp-1, and IL-10 than did Tregs from the medLNs. Adoptive transfer of Ag-reactive Tregs led to decreased proliferation of antiviral CD4(+) and CD8(+) effector T cells in the lungs of infected hosts, whereas depletion of Tregs had a reciprocal effect. These studies demonstrate that thymically generated Tregs can become activated by a pathogen-derived peptide and acquire discrete T-bet(+) Treg phenotypes while participating in and modulating an antiviral immune response.


Assuntos
Ativação Linfocitária/imunologia , Infecções por Orthomyxoviridae/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Antígenos Virais/imunologia , Diferenciação Celular/imunologia , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Orthomyxoviridae/imunologia , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/citologia , Linfócitos T Reguladores/citologia
14.
Cancer Res ; 73(8): 2695-705, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23440423

RESUMO

Metastatic traits seem to be acquired by transformed cells with progenitor-like cancer-initiating properties, but there remains little mechanistic insight into this linkage. In this report, we show that the polarity protein Numbl, which is expressed normally in neuronal progenitors, becomes overexpressed and mislocalized in cancer cells from a variety of human tumors. Numbl overexpression relies on loss of the tumor suppressor miRNA-296-5p (miR-296), which actively represses translation of Numbl in normal cells. In turn, deregulated expression of Numbl mediates random tumor cell migration and invasion, blocking anoikis and promoting metastatic dissemination. In clinical specimens of non-small cell lung cancer, we found that Numbl overexpression correlated with a reduction in overall patient survival. Mechanistically, Numbl-mediated tumorigenesis involved suppression of a "stemness" transcriptional program driven by the stem cell programming transcription factor Klf4, thereby preserving a pool of progenitor-like cells in lung cancer. Our results reveal that Numbl-Klf4 signaling is critical to maintain multiple nodes of metastatic progression, including persistence of cancer-initiating cells, rationalizing its therapeutic exploitation to improve the treatment of advanced lung cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transdução de Sinais , Animais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Análise por Conglomerados , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/química , MicroRNAs/genética , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , Transcrição Gênica
15.
J Cell Physiol ; 228(7): 1601-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23359252

RESUMO

This study was carried out to dissect the mechanism by which ß1 integrins promote resistance to radiation. For this purpose, we conditionally ablated ß1 integrins in the prostatic epithelium of transgenic adenocarcinoma of mouse prostate (TRAMP) mice. The ability of ß1 to promote resistance to radiation was also analyzed by using an inhibitory antibody to ß1 , AIIB2, in a xenograft model. The role of ß1 integrins and of a ß1 downstream target, c-Jun amino-terminal kinase 1 (JNK1), in regulating radiation-induced apoptosis in vivo and in vitro was studied. We show that ß1 integrins promote prostate cancer (PrCa) progression and resistance to radiation in vivo. Mechanistically, ß1 integrins are shown here to suppress activation of JNK1 and, consequently apoptosis, in response to irradiation. Downregulation of JNK1 is necessary to preserve the effect of ß1 on resistance to radiation in vitro and in vivo. Finally, given the established crosstalk between ß1 integrins and type1 insulin-like growth factor receptor (IGF-IR), we analyzed the ability of IGF-IR to modulate ß1 integrin levels. We report that IGF-IR regulates the expression of ß1 integrins, which in turn confer resistance to radiation in PrCa cells. In conclusion, this study demonstrates that ß1 integrins mediate resistance to ionizing radiation through inhibition of JNK1 activation.


Assuntos
Integrina beta1/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Tolerância a Radiação/fisiologia , Animais , Apoptose/fisiologia , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Integrina beta1/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genética , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transplante Heterólogo
16.
Am J Transl Res ; 4(2): 165-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22611469

RESUMO

Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The α(v)ß(6) integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of α(v)ß(6) in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, α(v)ß(6) expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of α(v)ß(6) in two in vivo mouse models; the Pten(pc)-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the α(v)ß(6) integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. α(v)ß(6) is expressed in all the mice with cancer in the Pten(pc-/-) model but not in age-matched wild-type mice. In the POET inflammation model, α(v)ß(6) is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFß1), a factor in inflammation that is activated by α(v)ß(6). In conclusion, through in vivo evidence, we conclude that α(v)ß(6) integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma.

17.
J Am Assoc Lab Anim Sci ; 51(6): 832-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23294892

RESUMO

Perioperative treatment of several rats in our facility with ketoprofen (5 mg/kg SC) resulted in blood loss, peritonitis, and death within a day to a little more than a week after surgery that was not related to the gastrointestinal tract. Published reports have established the 5-mg/kg dose as safe and effective for rats. Because ketoprofen is a nonselective nonsteroidal antiinflammatory drug that can damage the gastrointestinal tract, the putative diagnosis for these morbidities and mortalities was gastrointestinal toxicity caused by ketoprofen (5 mg/kg). We conducted a prospective study evaluating the effect of this therapeutic dose of ketoprofen on the rat gastrointestinal tract within 24 h. Ketoprofen (5 mg/kg SC) was administered to one group of rats that then received gas anesthesia for 30 min and to another group without subsequent anesthesia. A third group was injected with saline followed by 30 min of gas anesthesia. Our primary hypothesis was that noteworthy gastrointestinal bleeding and lesions would occur in both groups treated with ketoprofen but not in rats that received saline and anesthesia. Our results showed marked gastrointestinal bleeding, erosions, and small intestinal ulcers in the ketoprofen-treated rats and minimal damages in the saline-treated group. The combination of ketoprofen and anesthesia resulted in worse clinical signs than did ketoprofen alone. We conclude that a single 5-mg/kg dose of ketoprofen causes acute mucosal damage to the rat small intestine.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Gastroenteropatias/veterinária , Cetoprofeno/efeitos adversos , Dor Pós-Operatória/veterinária , Ratos , Doenças dos Roedores/induzido quimicamente , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Fezes/química , Feminino , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/patologia , Cetoprofeno/administração & dosagem , Dor Pós-Operatória/complicações , Dor Pós-Operatória/tratamento farmacológico , Estudos Prospectivos , Doenças dos Roedores/patologia
18.
Cancer Res ; 72(2): 472-81, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22127926

RESUMO

cJun NH(2)-terminal kinase (JNK) signaling has been implicated in the developmental morphogenesis of epithelial organs. In this study, we employed a compound deletion of the murine Jnk1 and Jnk2 genes in the mammary gland to evaluate the requirement for these ubiquitously expressed genes in breast development and tumorigenesis. JNK1/2 was not required for breast epithelial cell proliferation or motility. However, JNK1/2 deficiency caused increased branching morphogenesis and defects in the clearance of lumenal epithelial cells. In the setting of breast cancer development, JNK1/2 deficiency significantly increased tumor formation. Together, these findings established that JNK signaling is required for normal mammary gland development and that it has a suppressive role in mammary tumorigenesis.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Glândulas Mamárias Animais/enzimologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Neoplasias Mamárias Experimentais/enzimologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Movimento Celular/fisiologia , Feminino , Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Proteína Quinase 8 Ativada por Mitógeno/deficiência , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Proteína Quinase 9 Ativada por Mitógeno/genética
19.
PLoS One ; 6(9): e24813, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980358

RESUMO

Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53(S18A) mice) have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm(-/-) animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53(S18A) and Atm(-/-) animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm(-/-) animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proliferação de Células , Feminino , Fibroblastos/citologia , Mutação em Linhagem Germinativa , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Mutação , Fosforilação
20.
Genes Dev ; 25(6): 634-45, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406557

RESUMO

The cJun NH(2)-terminal kinase (JNK) signal transduction pathway has been implicated in the growth of carcinogen-induced hepatocellular carcinoma. However, the mechanism that accounts for JNK-regulated tumor growth is unclear. Here we demonstrate that compound deficiency of the two ubiquitously expressed JNK isoforms (JNK1 and JNK2) in hepatocytes does not prevent hepatocellular carcinoma development. Indeed, JNK deficiency in hepatocytes increased the tumor burden. In contrast, compound JNK deficiency in hepatocytes and nonparenchymal cells reduced both hepatic inflammation and tumorigenesis. These data indicate that JNK plays a dual role in the development of hepatocellular carcinoma. JNK promotes an inflammatory hepatic environment that supports tumor development, but also functions in hepatocytes to reduce tumor development.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Hepatócitos , Neoplasias Hepáticas/fisiopatologia , Fígado/enzimologia , Proteína Quinase 8 Ativada por Mitógeno , Animais , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocinas/metabolismo , Hepatócitos/enzimologia , Hepatócitos/patologia , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/deficiência , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA