Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(2): e0032923, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38289064

RESUMO

Synonymous mutations are changes to DNA sequence, which occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation elongation factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels as well as global polysome abundance on RNA transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.IMPORTANCEThis study explores the degree to which synonymous mutations in essential genes can influence adaptation in bacteria. An experimental system whereby an Escherichia coli strain harboring an engineered translation protein elongation factor-Tu (EF-Tu) was subjected to laboratory evolution. We find that a synonymous mutation acquired on the gene encoding for EF-Tu is conditionally beneficial for bacterial fitness. Our findings provide insight into the importance of the genetic background when a synonymous substitution is favored by natural selection and how such changes have the potential to impact evolution when critical cellular processes are involved.


Assuntos
Escherichia coli , Fator Tu de Elongação de Peptídeos , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Mutação , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , Patrimônio Genético
2.
bioRxiv ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37886545

RESUMO

Synonymous mutations are changes to DNA sequence that occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation Elongation Factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels, as well as the polysome abundance on global transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.

3.
mBio ; 12(3): e0115121, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061591

RESUMO

Homologous recombination is an important mechanism directly involved in the repair, organization, and evolution of prokaryotic and eukaryotic chromosomes. We developed a system, based on two genetic cassettes, that allows the measurement of recombinational repair rates between different locations on the chromosome. Using this system, we analyzed 81 different positional combinations throughout the chromosome to answer the question of how the position and orientation of sequences affect intrachromosomal homologous recombination. Our results show that recombination was possible between any two locations tested in this study and that recombinational repair rates varied by just above an order of magnitude. The observed differences in rate do not correlate with distance between the recombination cassettes or with distance from the origin of replication but could be explained if each location contributes individually to the recombination event. The relative levels of accessibility for recombination vary 5-fold between the various cassette locations, and we found that the nucleoid structure of the chromosome may be the major factor influencing the recombinational accessibility of each chromosomal site. Furthermore, we found that the orientation of the recombination cassettes had a significant impact on recombination. Recombinational repair rates for the cassettes inserted as direct repeats are, on average, 2.2-fold higher than those for the same sets inserted as inverted repeats. These results suggest that the bacterial chromosome is not homogenous with regard to homologous recombination, with regions that are more or less accessible, and that the orientation of genes affects recombination rates. IMPORTANCE Bacterial chromosomes frequently carry multiple copies of genes at separate chromosomal locations. In Salmonella, these include the 7 rrn operons and the duplicate tuf genes. Genes within these families coevolve by homologous recombination, but it is not obvious whether their rates of recombination reflect general rates of intrachromosomal recombination or are an evolved property particularly associated with these conserved genes and locations. Using a novel experimental system, we show that recombination is possible between all tested pairs of locations at rates that vary by just above 1 order of magnitude. Differences in rate do not correlate with distance between the sites or distance to the origin of replication but may be explained if each location contributes individually to the recombination event. Our results suggest the existence of bacterial chromosomal domains that are differentially available for recombination and that gene orientation affects recombination rates.


Assuntos
Cromossomos Bacterianos/genética , Recombinação Homóloga , Salmonella/genética , Reparo do DNA
4.
mBio ; 9(5)2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206172

RESUMO

Highly expressed genes are commonly located close to the origin of replication of bacterial chromosomes (OriC). This location skew is thought to reflect selective advantages associated with gene dosage effects during the replication cycle. The expression of constitutively expressed genes can vary up to fivefold based on chromosomal location, but it is not clear what level of variation would occur in naturally regulated operons. We tested the magnitude of the chromosome location effect using EF-Tu (tufA, tufB), an abundant protein whose cellular level correlates with, and limits, the maximum growth rate. We translocated the Salmonella tufB operon to four locations across the chromosome. The distance from OriC had only a small effect on growth rate, consistent with this operon having the natural ability to upregulate expression and compensate for reduced gene dosage. In contrast, when the total EF-Tu concentration was limiting for the growth rate (tufA deleted), we observed a strong gene dosage effect when tufB was located further from OriC. However, only a short period of experimental evolution was required before the bacteria adapted to this EF-Tu starvation situation by acquiring genetic changes that increased expression levels from the translocated tufB gene, restoring growth rates. Our findings demonstrate that, at least for the tufB operon, gene dosage is probably not the dominant force selecting for a chromosomal location close to OriC. We suggest that the colocation of highly expressed genes close to OriC might instead be selected because it enhances their coregulation during various growth states, with gene dosage being a secondary benefit.IMPORTANCE A feature of bacterial chromosomes is that highly expressed essential genes are usually located close to the origin of replication. Because bacteria have overlapping cycles of replication, genes located close to the origin will often be present in multiple copies, and this is thought to be of selective benefit where high levels of expression support high growth rate. However, the magnitude of this selective effect and whether other forces could be at play are poorly understood. To study this, we translocated a highly expressed essential operon, tufB, to different locations and measured growth fitness. We found that transcriptional regulation buffered the effects of translocation and that even under conditions where growth rate was reduced, genetic changes that increased the expression of tufB were easily and rapidly selected. We conclude, at least for tufB, that forces other than gene dosage may be significant in selecting for chromosomal location.


Assuntos
Dosagem de Genes , Regulação da Expressão Gênica , Óperon , Salmonella/genética , Transcrição Gênica , Genes Bacterianos , Fator Tu de Elongação de Peptídeos/genética , RNA Bacteriano/genética , RNA de Transferência/genética , Origem de Replicação/genética , Salmonella/crescimento & desenvolvimento
5.
mBio ; 8(4)2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851849

RESUMO

Genes encoding proteins that carry out essential informational tasks in the cell, in particular where multiple interaction partners are involved, are less likely to be transferable to a foreign organism. Here, we investigated the constraints on transfer of a gene encoding a highly conserved informational protein, translation elongation factor Tu (EF-Tu), by systematically replacing the endogenous tufA gene in the Escherichia coli genome with its extant and ancestral homologs. The extant homologs represented tuf variants from both near and distant homologous organisms. The ancestral homologs represented phylogenetically resurrected tuf sequences dating from 0.7 to 3.6 billion years ago (bya). Our results demonstrate that all of the foreign tuf genes are transferable to the E. coli genome, provided that an additional copy of the EF-Tu gene, tufB, remains present in the E. coli genome. However, when the tufB gene was removed, only the variants obtained from the gammaproteobacterial family (extant and ancestral) supported growth which demonstrates the limited functional interchangeability of E. coli tuf with its homologs. Relative bacterial fitness correlated with the evolutionary distance of the extant tuf homologs inserted into the E. coli genome. This reduced fitness was associated with reduced levels of EF-Tu and reduced rates of protein synthesis. Increasing the expression of tuf partially ameliorated these fitness costs. In summary, our analysis suggests that the functional conservation of protein activity, the amount of protein expressed, and its network connectivity act to constrain the successful transfer of this essential gene into foreign bacteria.IMPORTANCE Horizontal gene transfer (HGT) is a fundamental driving force in bacterial evolution. However, whether essential genes can be acquired by HGT and whether they can be acquired from distant organisms are very poorly understood. By systematically replacing tuf with ancestral homologs and homologs from distantly related organisms, we investigated the constraints on HGT of a highly conserved gene with multiple interaction partners. The ancestral homologs represented phylogenetically resurrected tuf sequences dating from 0.7 to 3.6 bya. Only variants obtained from the gammaproteobacterial family (extant and ancestral) supported growth, demonstrating the limited functional interchangeability of E. coli tuf with its homologs. Our analysis suggests that the functional conservation of protein activity, the amount of protein expressed, and its network connectivity act to constrain the successful transfer of this essential gene into foreign bacteria.


Assuntos
DNA Antigo , Escherichia coli/genética , Genes Bacterianos , Genes Essenciais , Fator Tu de Elongação de Peptídeos/genética , Biossíntese de Proteínas , Proteínas de Bactérias , Transferência Genética Horizontal , Aptidão Genética , Genoma Bacteriano , Fator Tu de Elongação de Peptídeos/metabolismo , Filogenia , Proteobactérias/genética
6.
Mol Microbiol ; 98(1): 34-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26094815

RESUMO

RNase E is an essential bacterial endoribonuclease with a central role in processing tRNAs and rRNA, and turning over mRNAs. Previous studies in strains carrying mutations in the rne structural gene have shown that tRNA processing is likely to be an essential function of RNase E but have not determined whether mRNA turnover is also an essential function. To address this we selected extragenic suppressors of temperature-sensitive mutations in rne that cause a large increase in mRNA half-life at the non-permissive temperature. Fifteen suppressors were mapped to three different loci: relBE (toxin-antitoxin system); vacB (RNase R); and rpsA (ribosomal protein S1). Each suppressor class has the potential to interact with mRNA and each restores wild-type levels of mRNA turnover but does not reverse the minor defects in tRNA and rRNA processing. RelE toxin is especially interesting because its only known activity is to cleave mRNAs in the ribosomal A-site. The relBE suppressor mutations increase transcription of relE, and controlled overexpression of RelE alone was sufficient to suppress the rne ts phenotype. Suppression increased turnover of some major mRNAs (tufA, ompA) but not all mRNAs. We propose that turnover of some mRNAs is one of the essential functions of RNase E.


Assuntos
Endorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Supressão Genética , Proteínas da Membrana Bacteriana Externa/genética , Exorribonucleases/metabolismo , Fenótipo , RNA Ribossômico/metabolismo , Salmonella enterica/genética , Temperatura
7.
Pharmaceuticals (Basel) ; 5(1): 49-60, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24288042

RESUMO

Hepatitis C virus (HCV) replication is dependent on the existence of several highly conserved functional genomic RNA domains. The cis-acting replication element (CRE), located within the 3' end of the NS5B coding region of the HCV genome, has been shown essential for efficient viral replication. Its sequence and structural features determine its involvement in functional interactions with viral RNA-dependent RNA polymerase and distant RNA domains of the viral genome. This work reports the use of an in vitro selection strategy to select aptamer RNA molecules against the complete HCV-CRE. After six selection cycles, five potential target sites were identified within this domain. Inhibition assays using a sample of representative aptamers showed that the selected RNAs significantly inhibit the replication (>80%) of a subgenomic HCV replicon in Huh-7 cell cultures. These results highlight the potential of aptamer RNA molecules as therapeutic antiviral agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA