Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301653

RESUMO

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Assuntos
Linfócitos B , Tonsila Palatina , Humanos , Adulto , Linfócitos B/metabolismo
2.
Eur J Immunol ; 54(5): e2350872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388988

RESUMO

Lymph node (LN) fine needle aspiration (LN FNA) represents a powerful technique for minimally invasive sampling of human LNs in vivo and has been used effectively to directly study aspects of the human germinal center response. However, systematic deep phenotyping of the cellular populations and cell-free proteins recovered by LN FNA has not been performed. Thus, we studied human cervical LN FNAs as a proof-of-concept and used single-cell RNA-sequencing and proteomic analysis to benchmark this compartment, define the purity of LN FNA material, and facilitate future studies in this immunologically pivotal environment. Our data provide evidence that LN FNAs contain bone-fide LN-resident innate immune populations, with minimal contamination of blood material. Examination of these populations reveals unique biology not predictable from equivalent blood-derived populations. LN FNA supernatants represent a specific source of lymph- and lymph node-derived proteins, and can, aided by transcriptomics, identify likely receptor-ligand interactions. This represents the first description of the types and abundance of immune cell populations and cell-free proteins that can be efficiently studied by LN FNA. These findings are of broad utility for understanding LN physiology in health and disease, including infectious or autoimmune perturbations, and in the case of cervical nodes, neuroscience.


Assuntos
Linfonodos , Humanos , Linfonodos/imunologia , Biópsia por Agulha Fina/métodos , Proteômica/métodos , Imunidade Inata , Feminino , Análise de Célula Única/métodos , Centro Germinativo/imunologia , Masculino
3.
Nat Immunol ; 24(9): 1565-1578, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580605

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial metabolites through a semi-invariant T cell receptor (TCR). Major questions remain regarding the extent of human MAIT cell functional and clonal diversity. To address these, we analyzed the single-cell transcriptome and TCR repertoire of blood and liver MAIT cells and developed functional RNA-sequencing, a method to integrate function and TCR clonotype at single-cell resolution. MAIT cell clonal diversity was comparable to conventional memory T cells, with private TCR repertoires shared across matched tissues. Baseline functional diversity was low and largely related to tissue site. MAIT cells showed stimulus-specific transcriptional responses in vitro, with cells positioned along gradients of activation. Clonal identity influenced resting and activated transcriptional profiles but intriguingly was not associated with the capacity to produce IL-17. Overall, MAIT cells show phenotypic and functional diversity according to tissue localization, stimulation environment and clonotype.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Células Clonais/metabolismo , Ativação Linfocitária/genética , Análise de Célula Única
4.
Nat Commun ; 13(1): 7472, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463279

RESUMO

Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.


Assuntos
Besouros , Colite , Humanos , Camundongos , Animais , Contagem de Linfócitos , Vigilância Imunológica , Colite/induzido quimicamente , Citocinas
5.
Eur J Immunol ; 52(5): 835-837, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34958459

RESUMO

Vδ2+ γδT cells are unconventional T cells that can be activated by cytokines without TCR signaling. Adenovirus vaccine vectors activated Vδ2+ γδT cells in an interleukin 18-, TNF-, and type I interferon-dependent manner. This stimulatory capacity was associated with adenovirus vectors of non-species C origin, including the ChAdOx1 vaccine platform.


Assuntos
Interferon Tipo I , Subpopulações de Linfócitos T , Adenoviridae/genética , Citocinas , Interleucina-18 , Receptores de Antígenos de Linfócitos T gama-delta/genética
6.
Nat Immunol ; 23(1): 50-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853448

RESUMO

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Assuntos
Antígeno HLA-B7/imunologia , Epitopos Imunodominantes/imunologia , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Idoso , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/imunologia , COVID-19/imunologia , COVID-19/patologia , Linhagem Celular Transformada , Feminino , Perfilação da Expressão Gênica , Humanos , Memória Imunológica/imunologia , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/imunologia , Índice de Gravidade de Doença , Vaccinia virus/genética , Vaccinia virus/imunologia , Vaccinia virus/metabolismo
7.
Science ; 371(6528): 521-526, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33510029

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.


Assuntos
Adenoviridae/imunologia , Imunogenicidade da Vacina , Células T Invariantes Associadas à Mucosa/imunologia , Vacinas Virais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vetores Genéticos/imunologia , Humanos , Interferon-alfa/metabolismo , Interleucina-18/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
8.
Cell Rep ; 34(3): 108661, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472060

RESUMO

Tissue-resident memory T (TRM) cells provide key adaptive immune responses in infection, cancer, and autoimmunity. However, transcriptional heterogeneity of human intestinal TRM cells remains undefined. Here, we investigate transcriptional and functional heterogeneity of human TRM cells through study of donor-derived TRM cells from intestinal transplant recipients. Single-cell transcriptional profiling identifies two transcriptional states of CD8+ TRM cells, delineated by ITGAE and ITGB2 expression. We define a transcriptional signature discriminating these populations, including differential expression of cytotoxicity- and residency-associated genes. Flow cytometry of recipient-derived cells infiltrating the graft, and lymphocytes from healthy gut, confirm these CD8+ TRM phenotypes. CD8+ CD69+CD103+ TRM cells produce interleukin-2 (IL-2) and demonstrate greater polyfunctional cytokine production, whereas ß2-integrin+CD69+CD103- TRM cells have higher granzyme expression. Analysis of intestinal CD4+ T cells identifies several parallels, including a ß2-integrin+ population. Together, these results describe the transcriptional, phenotypic, and functional heterogeneity of human intestinal CD4+ and CD8+ TRM cells.


Assuntos
Intestinos/fisiologia , Células T de Memória/metabolismo , Humanos
9.
Clin Cancer Res ; 26(16): 4313-4325, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32430479

RESUMO

PURPOSE: The cytokine IL22 promotes tumor progression in murine models of colorectal cancer. However, the clinical significance of IL22 in human colorectal cancer remains unclear. We sought to determine whether the IL22 pathway is associated with prognosis in human colorectal cancer, and to identify mechanisms by which IL22 can influence disease progression. EXPERIMENTAL DESIGN: Transcriptomic data from stage II/III colon cancers in independent discovery (GSE39582 population-based cohort, N = 566) and verification (PETACC3 clinical trial, N = 752) datasets were used to investigate the association between IL22 receptor expression (encoded by the genes IL22RA1 and IL10RB), tumor mutation status, and clinical outcome using Cox proportional hazard models. Functional interactions between IL22 and mutant KRAS were elucidated using human colorectal cancer cell lines and primary tumor organoids. RESULTS: Transcriptomic analysis revealed a poor-prognosis subset of tumors characterized by high expression of IL22RA1, the alpha subunit of the heterodimeric IL22 receptor, and KRAS mutation [relapse-free survival (RFS): HR = 2.93, P = 0.0006; overall survival (OS): HR = 2.45, P = 0.0023]. KRAS mutations showed a similar interaction with IL10RB and conferred the worst prognosis in tumors with high expression of both IL22RA1 and IL10RB (RFS: HR = 3.81, P = 0.0036; OS: HR = 3.90, P = 0.0050). Analysis of human colorectal cancer cell lines and primary tumor organoids, including an isogenic cell line pair that differed only in KRAS mutation status, showed that IL22 and mutant KRAS cooperatively enhance cancer cell proliferation, in part through augmentation of the Myc pathway. CONCLUSIONS: Interactions between KRAS and IL22 signaling may underlie a previously unrecognized subset of clinically aggressive colorectal cancer that could benefit from therapeutic modulation of the IL22 pathway.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Interleucinas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Idoso , Animais , Neoplasias do Colo/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Subunidade beta de Receptor de Interleucina-10/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Prognóstico , Receptores de Interleucina/genética , Transdução de Sinais/genética , Proteínas ras/genética , Interleucina 22
10.
J Crohns Colitis ; 14(10): 1446-1461, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179884

RESUMO

BACKGROUND AND AIMS: Lymphocyte activation gene [LAG]-3 is an immune checkpoint and its expression identifies recently activated lymphocytes that may contribute to inflammation. We investigated the role of LAG-3 by analysing its expression and function in immune cells from blood and tissue of patients with ulcerative colitis [UC]. METHODS: The phenotypic properties of LAG-3+ T cells were determined by flow cytometry, qRT-PCR and single-cell RNA-sequencing. LAG-3+ cells were quantified and correlated with disease activity. The functional effects of LAG-3+ cells were tested using a depleting anti-LAG-3 monoclonal antibody [mAb] in a mixed lymphocyte reaction [MLR]. RESULTS: LAG-3+ cells in the blood were negligible. LAG-3+ lymphocytes were markedly increased in inflamed mucosal tissue and both frequencies of LAG-3+ T cells and transcript levels of LAG3 correlated with endoscopic severity. LAG-3 expression was predominantly on effector memory T cells, and single-cell RNA-sequencing revealed LAG3 expression in activated and cytokine-producing T cell subsets. Foxp3+CD25hi Tregs also expressed LAG-3, although most mucosal Tregs were LAG-3-. Mucosal LAG-3+ cells produced mainly interferon γ [IFNγ] and interleukin-17A. LAG-3+ cell numbers decreased in patients who responded to biologics, and remained elevated in non-responders. Treatment with a depleting anti-LAG-3 mAb led to a reduction in proliferation and IFNγ production in an MLR. CONCLUSIONS: LAG-3+ cells are increased in the inflamed mucosa, predominantly on effector memory T cells with an activated phenotype and their cell numbers positively correlate with disease activity. Depleting LAG-3 eliminates activated proliferating T cells, and hence LAG-3 could be a therapeutic target in UC.


Assuntos
Antígenos CD/imunologia , Colite Ulcerativa , Mucosa Intestinal , Ativação Linfocitária/imunologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Desenvolvimento de Medicamentos , Endoscopia/métodos , Humanos , Proteínas de Checkpoint Imunológico/imunologia , Inflamação/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Gravidade do Paciente , Índice de Gravidade de Doença , Subpopulações de Linfócitos T , Proteína do Gene 3 de Ativação de Linfócitos
11.
Methods Mol Biol ; 2098: 97-124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792818

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant innate-like T cell subset in humans, enriched in mucosal tissues and the liver. MAIT cells express a semi-invariant T cell receptor (TCR) and recognize microbial-derived riboflavin metabolites presented on the MHC Class I-like molecule MR1. In addition to activation via the TCR, MAIT cells can also be activated in response to cytokines such as IL-12 and IL-18, in contrast to conventional T cells. Here we describe TCR-dependent and -independent methods for MAIT cell activation. The TCR-dependent approaches include stimulation with microbead- or plate-bound anti-CD3/anti-CD28 antibodies, and with 5-OP-RU or paraformaldehyde (PFA)-fixed E. coli in the presence of antigen-presenting cells (APCs). The latter method includes a combination of TCR- and cytokine-mediated stimulation. The TCR-independent methods include direct stimulation with the recombinant cytokines IL-12 and IL-18, and indirect stimulation with TLR-4/TLR-8 agonists or influenza A virus in the presence of APCs. Finally, we outline a protocol to analyze activated MAIT cells using flow cytometry.


Assuntos
Ativação Linfocitária/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Escherichia coli/imunologia , Citometria de Fluxo , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Coloração e Rotulagem , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Vírus/imunologia
12.
Front Immunol ; 9: 1478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013556

RESUMO

Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are innate-like T cells that function at the interface between innate and adaptive immunity. They express semi-invariant T cell receptors (TCRs) and recognize unconventional non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respectively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cytokines and show direct cytotoxic activity. Consequently, they are essential for effective immunity, and alterations in their frequency and function are associated with numerous infectious, inflammatory, and malignant diseases. Due to their abundance in mice and the earlier development of reagents, iNKT cells have been more extensively studied than MAIT cells. This has led to the routine use of iNKT cells as a reference population for the study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells and iNKT cells show important phenotypic, functional, and developmental differences that are often overlooked. With the recent availability of new tools, most importantly MR1 tetramers, it is now possible to directly study MAIT cells to understand their biology. Therefore, it is timely to compare the phenotype, development, and function of MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show similarity or difference to iNKT cells. In addition, we discuss important avenues for future research within the MAIT cell field, especially where comparison to iNKT cells has proven less informative.

13.
Front Immunol ; 9: 756, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740432

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells abundant in humans that can be activated in a TCR-independent manner by inflammatory and antiviral cytokines. In humans, the capacity for TCR-independent activation is functionally linked to a transcriptional program that can be identified by the expression of the C-type lectin receptor, CD161. In addition to MAIT cells, it has been demonstrated that a subset of γδT cells expresses CD161 and can be activated by TCR-independent cytokine stimulation. In this study, we sought to clarify the nature of cytokine-responsive human γδT cells. We could link CD161 expression on Vδ2+ versus Vδ1+ γδT cells to the observation that Vδ2+ γδT cells, but not Vδ1+ γδT cells, robustly produced IFN-γ upon stimulation with a variety of cytokine combinations. Interestingly, both CD161+ and CD161- Vδ2+ γδT cells responded to these stimuli, with increased functionality within the CD161+ subset. This innate-like responsiveness corresponded to high expression of PLZF and IL-18Rα, analogous to MAIT cells. Vδ2+ γδT cells in human duodenum and liver maintained a CD161+ IL-18Rα+ phenotype and produced IFN-γ in response to IL-12 and IL-18 stimulation. In contrast to MAIT cells, we could not detect IL-17A production but observed higher steady-state expression of Granzyme B by Vδ2+ γδT cells. Finally, we investigated the frequency and functionality of γδT cells in the context of chronic hepatitis C virus infection, as MAIT cells are reduced in frequency in this disease. By contrast, Vδ2+ γδT cells were maintained in frequency and displayed unimpaired IFN-γ production in response to cytokine stimulation. In sum, human Vδ2+ γδT cells are a functionally distinct population of cytokine-responsive innate-like T cells that is abundant in blood and tissues with similarities to human MAIT cells.


Assuntos
Ativação Linfocitária/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Feminino , Hepatite C Crônica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T gama-delta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA