Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 725: 138380, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298886

RESUMO

Snow accumulation and melt have multiple impacts on Land Surface Phenology (LSP) and greenness in Alpine grasslands. Our understanding of these impacts and their interactions with meteorological factors are still limited. In this study, we investigate this topic by analyzing LSP dynamics together with potential drivers, using satellite imagery and other data sources. LSP (start and end of season) and greenness metrics were extracted from time series of vegetation and leaf area index. As explanatory variables we used snow accumulation, snow cover melt date and meteorological factors. We tested for inter-annual co-variation of LSP and greenness metrics with seasonal snow and meteorological metrics across elevations and for four sub-regions of natural grasslands in the Swiss Alps over the period 2003-2014. We found strong positive correlations of snow cover melt date and snow accumulation with the start of season, especially at higher elevation. Autumn temperature was found to be important at the end of season below 2000 m above sea level (m asl), while autumn precipitation was relevant above 2000 m asl, indicating climatic growth limiting factors to be elevation dependent. The effects of snow and meteorological factors on greenness revealed that this metric tends to be influenced by temperatures at high elevations, and by snow melt date at low elevations. Given the high sensitivity of alpine grassland ecosystems, these results suggest that alpine grasslands may be particularly affected by future changes in seasonal snow, to varying degree depending on elevation.

2.
Glob Chang Biol ; 22(4): 1456-68, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26924776

RESUMO

Monitoring land surface phenology (LSP) is important for understanding both the responses and feedbacks of ecosystems to the climate system, and for representing these accurately in terrestrial biosphere models. Moreover, by shedding light on phenological trends at a variety of scales, LSP provides the potential to fill the gap between traditional phenological (field) observations and the large-scale view of global models. In this study, we review and evaluate the variability and evolution of satellite-derived growing season length (GSL) globally and over the past three decades. We used the longest continuous record of Normalized Difference Vegetation Index data available to date at global scale to derive LSP metrics consistently over all vegetated land areas and for the period 1982-2012. We tested GSL, start- and end-of-season metrics (SOS and EOS, respectively) for linear trends as well as for significant trend shifts over the study period. We evaluated trends using global environmental stratification information in place of commonly used land cover maps to avoid circular findings. Our results confirmed an average lengthening of the growing season globally during 1982-2012 - averaging 0.22-0.34 days yr(-1), but with spatially heterogeneous trends. About 13-19% of global land areas displayed significant GSL change, and over 30% of trends occurred in the boreal/alpine biome of the Northern Hemisphere, which showed diverging GSL evolution over the past three decades. Within this biome, the 'Cold and Mesic' environmental zone appeared as an LSP change hotspot. We also examined the relative contribution of SOS and EOS to the overall changes, finding that EOS trends were generally stronger and more prevalent than SOS trends. These findings constitute a step towards the identification of large-scale phenological drivers of vegetated land surfaces, necessary for improving phenological representation in terrestrial biosphere models.


Assuntos
Algoritmos , Desenvolvimento Vegetal , Estações do Ano , Mudança Climática , Ecossistema , Comunicações Via Satélite
3.
Glob Chang Biol ; 20(11): 3457-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24797086

RESUMO

Land Surface Phenology (LSP) is the most direct representation of intra-annual dynamics of vegetated land surfaces as observed from satellite imagery. LSP plays a key role in characterizing land-surface fluxes, and is central to accurately parameterizing terrestrial biosphere-atmosphere interactions, as well as climate models. In this article, we present an evaluation of Pan-European LSP and its changes over the past 30 years, using the longest continuous record of Normalized Difference Vegetation Index (NDVI) available to date in combination with a landscape-based aggregation scheme. We used indicators of Start-Of-Season, End-Of-Season and Growing Season Length (SOS, EOS and GSL, respectively) for the period 1982-2011 to test for temporal trends in activity of terrestrial vegetation and their spatial distribution. We aggregated pixels into ecologically representative spatial units using the European Landscape Classification (LANMAP) and assessed the relative contribution of spring and autumn phenology. GSL increased significantly by 18-24 days decade(-1) over 18-30% of the land area of Europe, depending on methodology. This trend varied extensively within and between climatic zones and landscape classes. The areas of greatest growing-season lengthening were the Continental and Boreal zones, with hotspots concentrated in southern Fennoscandia, Western Russia and pockets of continental Europe. For the Atlantic and Steppic zones, we found an average shortening of the growing season with hotspots in Western France, the Po valley, and around the Caspian Sea. In many zones, changes in the NDVI-derived end-of-season contributed more to the GSL trend than changes in spring green-up, resulting in asymmetric trends. This underlines the importance of investigating senescence and its underlying processes more closely as a driver of LSP and global change.


Assuntos
Mudança Climática , Desenvolvimento Vegetal , Europa (Continente) , Modelos Teóricos , Tecnologia de Sensoriamento Remoto , Estações do Ano , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA