Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 640: 144-161, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842420

RESUMO

Light-controlled therapies offer a promising strategy to prevent and suppress infections caused by numerous bacterial pathogens. Excitation of exogenously supplied photosensitizers (PS) at specific wavelengths elicits levels of reactive oxygen intermediates toxic to bacteria. Porphyrin-based supramolecular nanostructure frameworks (SNF) are effective PS with unique physicochemical properties that have led to their widespread use in photomedicine. Herein, we developed a nitric oxide (NO) releasing, biocompatible, and stable porphyrin-based SNF (SNF-NO), which was achieved through a confined noncovalent self-assembly process based on π-π stacking. Characterization of the SNFs via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the formation of three-dimensional, well-defined octahedral structures. These SNF-NO were shown to exhibit a red shift due to the noncovalent self-assembly of porphyrins, which also show extended light absorption to broadly cover the entire visible light spectrum to enhance photodynamic therapy (PDT). Under visible light irradiation (46 J cm-2), the SNF generates high yields of singlet oxygen (1O2) radicals, hydroxyl radicals (HO), superoxide radicals (O2), and peroxynitrite (ONOO-) radicals that have shown potential to enhance antimicrobial photodynamic therapy (APDT) against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli (E. coli). The resulting SNFs also exhibit significant biofilm dispersion and a decrease in biomass production. The combination of robust photosensitizer SNFs with nitric oxide-releasing capabilities is dynamic in its ability to target pathogenic infections while remaining nontoxic to mammalian cells. The engineered SNFs have enormous potential for treating and managing microbial infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Porfirinas , Animais , Óxido Nítrico , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Luz , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Porfirinas/farmacologia , Porfirinas/química , Mamíferos
2.
ACS Appl Mater Interfaces ; 14(19): 21916-21930, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35507415

RESUMO

Demineralization and breakdown of tooth enamel are characterized by a condition called dental caries or tooth decay, which is caused by two main factors: (1) highly acidic food intake without proper oral hygiene and (2) overactive oral bacteria generating acidic metabolic byproducts. Fluoride treatments have been shown to help rebuild the hydroxyapatite structures that make up 98% of enamel but do not tackle the bacterial overload that continues to threaten future demineralization. Herein, we have created a dual-function Pluronic F127-alginate hydrogel with nitric oxide (NO)- and fluoride-releasing capabilities for the two-pronged treatment of dental caries. Analysis of the hydrogels demonstrated porous, shear-thinning behaviors with tunable mechanical properties. Varying the weight percent of the NO donor S-nitrosoglutathione (GSNO) within the hydrogel enabled physiologically actionable NO release over 4 h, with the fabricated gels demonstrating storage stability over 21 days. This NO-releasing capability resulted in a 97.59% reduction of viable Streptococcus mutans in the planktonic state over 4 h and reduced the preformed biofilm mass by 48.8% after 24 h. Delivery of fluoride ions was confirmed by a fluoride-sensitive electrode, with release levels resulting in the significant prevention of demineralization of hydroxyapatite discs after treatment with an acidic demineralization solution. Exposure to human gingival fibroblasts and human osteoblasts showed cytocompatibility of the hydrogel, demonstrating the potential for the successful treatment of dental caries in patients.


Assuntos
Cárie Dentária , Desmineralização do Dente , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Fluoretos/farmacologia , Humanos , Hidrogéis/farmacologia , Hidroxiapatitas , Óxido Nítrico , Streptococcus mutans/fisiologia , Desmineralização do Dente/prevenção & controle
3.
ACS Appl Bio Mater ; 5(5): 2212-2223, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35404571

RESUMO

Multifunctional antithrombotic surface modifications for blood-contacting medical devices have emerged as a solution for foreign surface-mediated coagulation disturbance. Herein, we have developed and evaluated an endothelium-inspired strategy to reduce the thrombogenicity of medical plastics by imparting nitric oxide (NO) elution and heparin immobilization on the material surface. This dual-action approach (NO+Hep) was applied to polyethylene terephthalate (PET) blood incubation vials and compared to isolated modifications. Vials were characterized to evaluate NO surface flux as well as heparin density and activity. Hemocompatibility was assessed in vitro using whole blood from human donors. Compared to unmodified surfaces, blood incubated in the NO+Hep vials exhibited reduced platelet aggregation (15% decrease AUC, p = 0.040) and prolonged plasma clotting times (aPTT = 147% increase, p < 0.0001, prothrombin time = 5% increase, p = 0.0002). Prolongation of thromboelastography reaction time and elevated antifactor Xa levels in blood from NO+Hep versus PET vials suggests some heparin leaching from the vial surface, confirmed by post-blood incubation heparin density assessment. Results suggest NO+Hep surface modification is a promising approach for blood-contacting plastics; however, careful tuning of NO flux and heparin stabilization are essential and require assessment using human blood as performed here.


Assuntos
Coagulação Sanguínea , Heparina , Endotélio , Heparina/farmacologia , Humanos , Óxido Nítrico , Plásticos
4.
Appl Mater Today ; 22: 100887, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38620577

RESUMO

Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting viral replication in host defense and warrants investigation for the development of antiviral therapeutics. With increased incidence of global pandemics concerning several respiratory-based viral infections, it is necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more efficient host clearance, as well as to fabricate new materials for deterring viral transmission from medical devices. Recent developments in creating stabilized NO donor compounds and their incorporation into macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. Despite this abundance of research, there has been little consideration of NO-releasing scaffolds and substrates for reducing passive transmission of viral infections or for treating several respiratory viral infections. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, and NO donor compounds for antiviral therapies; discuss the limitations of NO as an antiviral agent; and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral platforms.

5.
J Trauma Acute Care Surg ; 89(2S Suppl 2): S59-S68, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32251267

RESUMO

A new generation of extracorporeal artificial organ support technologies, collectively known as extracorporeal life support (ECLS) devices, is being developed for diverse applications to include acute support for trauma-induced organ failure, transitional support for bridge to organ transplant, and terminal support for chronic diseases. Across applications, one significant complication limits the use of these life-saving devices: thrombosis, bleeding, and inflammation caused by foreign surface-induced blood interactions. To address this challenge, transdisciplinary scientists and clinicians look to the vascular endothelium as inspiration for development of new biocompatible materials for ECLS. Here, we describe clinically approved and new investigational biomaterial solutions for thrombosis, such as immobilized heparin, nitric oxide-functionalized polymers, "slippery" nonadhesive coatings, and surface endothelialization. We describe how hemocompatible materials could abrogate the use of anticoagulant drugs during ECLS and by doing so radically change treatments in critical care. Additionally, we examine several special considerations for the design of biomaterials for ECLS, including: (1) preserving function of the artificial organ, (2) longevity of use, and (3) multifaceted approaches for the diversity of device functions and applications.


Assuntos
Materiais Biocompatíveis , Endotélio , Oxigenação por Membrana Extracorpórea/instrumentação , Albuminas , Anticoagulantes/uso terapêutico , Desenho de Equipamento , Heparina , Humanos , Óxido Nítrico , Fosforilcolina , Terapia Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA