Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(19): 21916-21930, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35507415

RESUMO

Demineralization and breakdown of tooth enamel are characterized by a condition called dental caries or tooth decay, which is caused by two main factors: (1) highly acidic food intake without proper oral hygiene and (2) overactive oral bacteria generating acidic metabolic byproducts. Fluoride treatments have been shown to help rebuild the hydroxyapatite structures that make up 98% of enamel but do not tackle the bacterial overload that continues to threaten future demineralization. Herein, we have created a dual-function Pluronic F127-alginate hydrogel with nitric oxide (NO)- and fluoride-releasing capabilities for the two-pronged treatment of dental caries. Analysis of the hydrogels demonstrated porous, shear-thinning behaviors with tunable mechanical properties. Varying the weight percent of the NO donor S-nitrosoglutathione (GSNO) within the hydrogel enabled physiologically actionable NO release over 4 h, with the fabricated gels demonstrating storage stability over 21 days. This NO-releasing capability resulted in a 97.59% reduction of viable Streptococcus mutans in the planktonic state over 4 h and reduced the preformed biofilm mass by 48.8% after 24 h. Delivery of fluoride ions was confirmed by a fluoride-sensitive electrode, with release levels resulting in the significant prevention of demineralization of hydroxyapatite discs after treatment with an acidic demineralization solution. Exposure to human gingival fibroblasts and human osteoblasts showed cytocompatibility of the hydrogel, demonstrating the potential for the successful treatment of dental caries in patients.


Assuntos
Cárie Dentária , Desmineralização do Dente , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Fluoretos/farmacologia , Humanos , Hidrogéis/farmacologia , Hidroxiapatitas , Óxido Nítrico , Streptococcus mutans/fisiologia , Desmineralização do Dente/prevenção & controle
2.
ACS Appl Bio Mater ; 5(5): 2212-2223, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35404571

RESUMO

Multifunctional antithrombotic surface modifications for blood-contacting medical devices have emerged as a solution for foreign surface-mediated coagulation disturbance. Herein, we have developed and evaluated an endothelium-inspired strategy to reduce the thrombogenicity of medical plastics by imparting nitric oxide (NO) elution and heparin immobilization on the material surface. This dual-action approach (NO+Hep) was applied to polyethylene terephthalate (PET) blood incubation vials and compared to isolated modifications. Vials were characterized to evaluate NO surface flux as well as heparin density and activity. Hemocompatibility was assessed in vitro using whole blood from human donors. Compared to unmodified surfaces, blood incubated in the NO+Hep vials exhibited reduced platelet aggregation (15% decrease AUC, p = 0.040) and prolonged plasma clotting times (aPTT = 147% increase, p < 0.0001, prothrombin time = 5% increase, p = 0.0002). Prolongation of thromboelastography reaction time and elevated antifactor Xa levels in blood from NO+Hep versus PET vials suggests some heparin leaching from the vial surface, confirmed by post-blood incubation heparin density assessment. Results suggest NO+Hep surface modification is a promising approach for blood-contacting plastics; however, careful tuning of NO flux and heparin stabilization are essential and require assessment using human blood as performed here.


Assuntos
Coagulação Sanguínea , Heparina , Endotélio , Heparina/farmacologia , Humanos , Óxido Nítrico , Plásticos
3.
J Trauma Acute Care Surg ; 89(2S Suppl 2): S59-S68, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32251267

RESUMO

A new generation of extracorporeal artificial organ support technologies, collectively known as extracorporeal life support (ECLS) devices, is being developed for diverse applications to include acute support for trauma-induced organ failure, transitional support for bridge to organ transplant, and terminal support for chronic diseases. Across applications, one significant complication limits the use of these life-saving devices: thrombosis, bleeding, and inflammation caused by foreign surface-induced blood interactions. To address this challenge, transdisciplinary scientists and clinicians look to the vascular endothelium as inspiration for development of new biocompatible materials for ECLS. Here, we describe clinically approved and new investigational biomaterial solutions for thrombosis, such as immobilized heparin, nitric oxide-functionalized polymers, "slippery" nonadhesive coatings, and surface endothelialization. We describe how hemocompatible materials could abrogate the use of anticoagulant drugs during ECLS and by doing so radically change treatments in critical care. Additionally, we examine several special considerations for the design of biomaterials for ECLS, including: (1) preserving function of the artificial organ, (2) longevity of use, and (3) multifaceted approaches for the diversity of device functions and applications.


Assuntos
Materiais Biocompatíveis , Endotélio , Oxigenação por Membrana Extracorpórea/instrumentação , Albuminas , Anticoagulantes/uso terapêutico , Desenho de Equipamento , Heparina , Humanos , Óxido Nítrico , Fosforilcolina , Terapia Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA